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ABSTRACT

We study solitary waves in the cylindrical Kadomtsev–Petviashvili equation designated to media with positive dispersion (the cKP1 equation).
By means of the Darboux–Matveev transform, we derive exact solutions that describe two-dimensional solitary waves (lumps), lump chains,
and their interactions. One of the obtained solutions describes the modulation instability of outgoing ring solitons and their disintegration
onto a number of lumps. We also derive solutions describing decaying lumps and lump chains of a complex spatial structure—ripplons. Then,
we study normal and anomalous (resonant) interactions of lump chains with each other and with ring solitons. Results obtained agree with
the numerical data presented in Part I of this study [Hu et al., Chaos (2024)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175716

This paper represents Part II of our study on exact solutions of
the cKP1 equation designated to waves in media with positive
dispersion. In Part I, we have studied primarily axisymmetri-
cal solutions in the form of specific cylindrical solitons. It has
been shown that such solutions are unstable with respect to the
modulation of their fronts on the azimuthal direction in posi-
tive dispersion media. Here, we revise the earlier obtained exact
solutions to the cKP1 equation and show that formally correct
solutions that are not periodic on the azimuthal variable are not
physically acceptable. By means of the Darboux–Matveev trans-
form, we derive various exact solutions that describe, in particu-
lar, the nonlinear stage of the modulation instability of expanding
ring solitons and formation of two-dimensional solitons—lumps.
Other derived solutions describe normal and anomalous (res-
onance) interactions of lump chains with each other and with
ring solitons. Solutions obtained can be of interest in application
to physical processes occurring in plasma and other media with
positive dispersion.

I. INTRODUCTION

In Part I of this study,1 we considered soliton-type and self-
similar solutions of the cylindrical Kadomtsev–Petviashvili (cKP)
equation known also as the Johnson equation,2
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where u(t, r,ϕ) is wave perturbation, which depends on time t and
two spatial coordinates in the cylindrical frame (r,ϕ), c is the speed
of long linear waves, and α and β are the coefficient of nonlin-
earity and dispersion, respectively, which depend on parameters of
a particular physical problem. Equation (1.1) is presented here in
dimensional physical variables. In its derivation, it was assumed that
the effects of non-linearity, dispersion, geometrical spreading, and
variations along the azimuthal direction are small and of the same
order of smallness. Therefore, this equation and its solutions are not
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valid near the center of the polar coordinate frame where the dis-
tance r is less or comparable with the characteristic width of a wave
perturbation 3. To derive solutions to the cKP equation, it is nec-
essary to reduce it to the dimensionless “standard” form, which is
traditionally used in many publications (see, for example, Ref. 3),
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Here, the parameter σ 2 = ±1 determines the type of the cKP
equation; its sign is the same as the sign of the dispersion parameter
β ; therefore, βσ 2 > 0. The case with σ 2 = 1 pertains to the cKP2
equation that describes waves in media with negative dispersion (for
example, surface or internal waves in shallow water), whereas σ 2

= −1 pertains to the cKP1 equation applicable to waves in media
with positive dispersion (for example, waves in a magnetized
plasma). Such a classification based on the parameter σ 2 is very sim-
ilar to the classification of the conventional quasi-one-dimensional
KP equation (see, for example, Refs. 4 and 5).

If function U does not depend on θ , then Eq. (1.2) reduces
to the cylindrical Korteweg–de Vries (cKdV) equation. Exact and
approximate solutions as well as numerical solutions of the cKdV
equation in the form of pulse-type outgoing waves (“cylindrical soli-
tons”) were presented in Part I of this study.1 It was shown also that
axis-symmetric ring solitons are unstable with respect to azimuthal
perturbations in positive dispersive media with β < 0 (σ 2 = −1).
A numerical experiment has demonstrated that the development of
modulation of ring solitons leads to the emergence of compact two-
dimensional patterns, which can be treated as chains of lumps.1 This
process is similar to the development of modulation instability of
plane waves in positive dispersive media.6 In this paper, we con-
tinue studying by analytical methods the emergence of lump chains
from the modulated ring solitons, as well as normal and anomalous
interactions of lump chains.

II. THE DARBOUX–MATVEEV TRANSFORM

In this section, we present various exact solutions to the cKP1
equation through the Darboux–Matveev transform (DMT) method.
First, we briefly outline the DMT for the cKP1 equation following
Refs. 3 and 7, and then, we will use the method to construct new
solutions.

Let us consider the cKP1 equation in the “standard form”
(1.2) with σ = i. As well-known, this equation is exactly solvable
through the inverse scattering transform;8,9 it can be presented as
the compatibility condition of the linear set of equations,3,7,8
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where ∂V/∂τ = ∂U/∂θ . The adjoint set of equations is
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Here, function χ(r, θ , τ , λ) is complex-conjugate of function
ψ(r, θ , τ , λ), i.e., χ = ψ∗, where λ is a complex parameter. As shown
by Klein et al.,3 a solution to the cKP1 equation via the N-fold DMT
(short for Darboux–Matveev transform) with the seed solution
U = 0 can be expressed through the Hirota transform,
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Here, pl, l = 1, 2, . . . , N are real parameters, and the symbols
〈

ψl,χj

〉

stand for the integral,
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〉

=
∫
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)

dτ . (2.5)

In order to obtain a smooth analytical solution, the integration path
of Eq. (2.5) can be specifically determined based on the specific
type of the integrated function. Morever, ψl,χl are the solutions of
the Lax pair [Eqs. (2.1) and (2.2)] corresponding to the zero seed
solution with the specific spectral parameter λl.

If we choose a particular solution to Eqs. (2.1)–(2.2) with U = 0
in an exponential form, then we obtain an unbounded formal solu-
tion of the cKP1 equation, which corresponds to a line soliton (plane
soliton with a straight-wise front) of the KP1 equation.3 Such a solu-
tion can also be obtained through the relationship between the KP
and cKP equation shown in Fig. 1 of Part I of this study.1 Another
choice of particular solutions is in the form of Airy functions,
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where λl is real parameter yield solutions in the form of Ai- and Bi-
solitons, respectively, described in Part I. Due to the linearity of the
Lax pair, a linear combination of solution (2.6) is also a solution,
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where Al and Bl are arbitrary constants. Moreover, a derivative of
solution (2.7) with respect to the parameter λl is also a solution to
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FIG. 1. Structure of Ai- and Bi-solitons in positive dispersion media. Frame (a)
illustrates a typical Ai-soliton, and frame (b) illustrates a typical Bi-soliton. (A rear
part of the Bi-soliton tail has been cut because it went to infinity when r → 0,
whereas, at the vicinity of r = 0, the cKP equation is inapplicable.)

the Lax pair with U = 0, V = 0,

ψl = χ∗
l =

∑

[

∂

∂λl

Al

3
√

r
Ai

(

τ − 12λl

3
√

12r

)

eiλlθ

+
∂

∂λl

Bl

3
√

r
Bi

(

τ − 12λl

3
√

12r

)

eiλlθ

]

. (2.8)

In a similar way, one can construct the N-soliton solution in
terms of Airy functions of the first and second kinds by setting
pl = 1 and choosing appropriate functions (2.6). Many other par-
ticular solutions can be derived from Eqs. (2.7) and (2.8); however,
not all of them are physically meaningful. Below, we discuss some
solutions focusing basically on the most interesting and physically
meaningful solutions.

III. LUMP CHAINS

Soliton-type solutions containing Airy functions of the first and
second kinds (Ai-solitons and Bi-solitons, respectively) have simi-
lar features. The big difference between these solitons is that in the
positive dispersion media with σ 2 = −1, the pulse follows small-
amplitude leading ripples and shelf in the Ai-solitons, whereas, in
the Bi-solitons, a leading pulse is accompanied by a long small-
amplitude shelf; this is illustrated by Fig. 1. [In this figure and all
subsequent ones, we show U(t, r,ϕ) = α u(t, r,ϕ)/6.]

An inspection of soliton solutions shows that Ai-solitons are
described by a function that vanishes when r → ∞, whereas Bi-
solitons are described by a function that inevitably has a singularity
at a very big distance from the pulse head (see Ref. 1). Perhaps, this
singularity is not essential from a physical point of view and can
be ignored because, at such big distances, soliton fields practically
vanish; this issue remains open and requires further investigation
and comparison with experimental and numerical data. Modula-
tion instability of ring solitary waves in positive dispersion media
develops similarly regardless of their initial structure. We will focus
further primarily on the modulation instability of ring Ai-solitons;
however, the results are the same if one replaces Ai-functions with
Bi-functions in the subsequent formulas. As shown numerically in
Part I of this study,1 modulation instability of ring solitons with
respect to azimuthal perturbations of their fronts leads to the emer-
gence of lumps; in fact, the emergence of lump chains because even
a single lump in a circular geometry represents a chain due to the
periodicity of solutions in the angular variable. Here, we present
analytical solutions describing the emergence of lump chains from
ring solitons.

A solution representing a lump chain can be obtained if we set
in Eq. (2.3) pl = 0 and
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In this solution, the integration path in Eq. (2.5) is a ray extend-
ing from τ to +∞. The number of lumps in each lump chain on
the azimuthal interval −π < ϕ ≤ π is determined by the differ-

ence between the parameters λ: ml = |λ2l − λ2l−1|
√

6cσ 2 (2/βc)1/3.
[Note that in a similar way, lump chains were obtained in the
KP1 equation10,11 with functions f = exp(φ1)+ exp(φ2) and g = f ∗,
where φj = λjx + iλ2

j y − 4λ3
j t, and λj being a complex parameter

(j = 1, 2).] The simplest chain with only one lump on the period
can be obtained if we set n = 1 in Eq. (2.3). In general, the auxiliary
function corresponding to the m1-lump solution can be expressed as
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with zl = (τ − 12λl) /
3
√

12r.
Due to the properties of Hirota’s transformation, multiplying

auxiliary function equation (3.2) by any constant factor does not
affect the solution. Therefore, we can set A1 = 1 and set for A2 any
nonzero real number in the interval (−1, 1). Function (3.2) can be
interpreted as an Ai-soliton controlled by the parameter z1 that pro-
duces a lump chain under modulation of a ring wave controlled
by the parameter z2. When the perturbation is extremely small (A2

→ 0), the resultant lump chain moves with a small velocity and
consists of big-amplitude lumps. In another limit, when the per-
turbation is more pronounced, specifically when |A2| → 1, the
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FIG. 2. A one-lump chain with only one lump on the period −π < ϕ ≤ π . The solution shown in panel (a) is described by the function (3.2) at t = 40 with the following

parameters
{

A1 = 1, A2 = −1/4, β = −2, c = 1, λ1 = 0, λ2 = 1/
√
6
}

. Replacement of A2 from −1/4 to 1/4 with the same other parameters leads to the change
of the directions of lump motion by π . Panel (b) shows a cross section of the lump at ϕ = 0. Panel (c) demonstrates a decrease of a lump amplitude and stabilization at
A = 1.284 when t → +∞. The numerically obtained trajectory is well-approximated by a straight line r = 0.51t + 0.50 as t → +∞.

resultant lump chain moves faster but consists of small-amplitude
lumps.

When m1 = 1, the modulation effect is hardly visible, but as
a result of its development, one lump emerges on the interval −π
< ϕ ≤ π . Figure 2 presents a single lump, whose amplitude and
velocity stabilize over time. The modulation instability looks clearer
for bigger m1 that plays the role of a mode number. In particular,
when m1 = 4, one can observe the development of the modulation
instability shown in Fig. 3. At the early stage of modulation devel-
opment, for t < 3, the amplitude of the carrier ring wave decreases,
and the amplitude of modulation irregularly oscillates on its back-
ground. However, then, after t = 3, four spikes are created on the
ring wave, and their amplitudes begin to increase. Eventually, four
lumps emerge from spikes with gradually increasing amplitudes that
approach constant values.

Solutions shown in Figs. 2 and 3 were obtained with small val-
ues of A2 in comparison with A1. In such cases, A2 plays a role of
a small parameter in expression (3.2), and then the approximate
solution can be derived up to terms of o(A2),
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FIG. 3. Development of modulation instability when mode 4 azimuthal perturbation is imposed on the ring Ai-soliton. (a) t = 3.4, (b) t = 4, (c) t = 6, and (d) t = 30.

The solution is plotted for the function (3.2) with the following parameters:
{

c = 1, β = −2, A1 = 1, A2 = −0.01, λ1 = −2/
√
6, λ2 = 2/

√
6
}

. (a) t = 3.4. (b) t = 4.
(c) t = 6. (d) t = 30.

In the limiting case A2 = 0, Eq. (3.2) is identical to Eq. (2.4) in
Part I,1 which describes self-similar decaying circular ripples derived
first by Johnson.2 However, when A2 = 1, Eq. (3.2) describes rip-
ples composed of countless lump-type chains, each consisting of m1

lump waves. Moreover, as m1 increases, the manifestation of lump
waves becomes more pronounced, as shown in Fig. 4. Amplitudes of
lump-type formation decay with time.

The interaction between any number of lump chains can be
expressed through the following auxiliary function:

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

211 212 · · · · · · 21,N

221 222 · · · · · · 22,N

...
...

. . .
...

...
...

. . .
...

2N,1 2N,2 · · · · · · 2N,N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.5)

where

2lj = �2l−1,2j−1 +�2l−1,2j +�2l,2j−1 +�2l,2j, (3.6)

�l,l =
3
√

12A2
l

3
√

r

{

[

Ai′ (zl)
]2 − zlAi(zl)

2
}

,

(3.7)

�l,j =
AjAl

3
√

12
(

λj − λl

)

[

Ai(1)
(

zj

)

Ai (zl)− Ai(1) (zl)Ai
(

zj

)]

e−i(λj−λl)θ .

An example of the interaction between two lump chains is
depicted in Fig. 5, where the high-amplitude lump chain consists of
a single lump on a period (this chain is controlled by the parameters
A1, A2, λ1, and λ2), while the low-amplitude lump chain consists
of five lumps on a period. The low-amplitude lump chain propa-
gates faster; therefore, it overtakes a single lump and interacts with
it. The interaction is elastic so that both lump chains re-appear after
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FIG. 4. Ripplon solutions at t = 20 that are described by the auxiliary function (3.2) with A1 = −A2 = 1 and c = 1, β = −2. In panel (a), there is only one lump when

the following parameters are chosen λ1 = 0, λ2 = −1/
√
6. In panel (b), five primary lumps exist close to the center and a series of quasi-lump formations in front of each

lump when the following parameters are chosen λ1 = 3/
√
6, λ2 = −2/

√
6. (a) m1 = 1. (b) m1 = 5.

the interaction even without a shift in the angular direction. In this
particular case with the lump amplitude ratio A1/A2 = 5.42/0.81
= 6.69 > 3, the interaction has an overtaking character. However,
a similar overtaking character occurs even when the amplitude ratio
of lumps is less than 2.

IV. THE INTERACTION OF A LUMP CHAIN WITH A

RING SOLITON

In this section, we consider a solution describing a “normal,”
non-resonant interaction of a lump chain and a ring wave in the
form of the Ai-soliton (a similar solution can be obtained if we
replace an Ai-soliton by a Bi-soliton). In such an interaction, both
structures, the lump chain and the ring soliton, re-appear after the
interaction albeit with different amplitudes due to the cylindrical
divergence. In Sec. V, we present solutions describing “abnormal”
resonant interactions between various structures.

A hybrid solution consisting of a lump chain and a ring wave
can be expressed through the following auxiliary function:
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Here, functions�l,j are those that are given in Eq. (3.7).
The interaction of a lump chain with a circular wave can be

classified into two types based on whether the lump chain undergoes

displacement on the angular variable in the course of interaction
or not. We explain these two cases through the interaction of the
simplest lump chain with only one lump on a period and a circular
wave.

Figure 6 illustrates the energy exchange interaction between a
lump chain and a circular wave. Panel (a) shows the initial state,
where a slow moving lump of a big amplitude is located in front of
a faster-moving circular soliton of a smaller amplitude. As time pro-
gresses, the amplitude of the circular wave continuously decreases,
and its speed increases. On the front of a ring wave, a local-
ized perturbation (a spike) appears and gradually grows when the
ring wave approaches the lump [see panels (b) and (c) in Fig. 6].
This perturbation ultimately evolves into a lump of a big ampli-
tude, which moves slower than the ring wave and lags behind its
front [see panels (c) and (d) in Fig. 6]. At the same time, the
initial lump that was in front of the ring wave loses its energy,
decreases in amplitude, and is eventually absorbed by the ring
soliton.

There is also another type of interaction of a lump chain and a
ring soliton, which is illustrated by Fig. 7. When a small-amplitude
circular wave approaches a lump, they merge with each other at the
point of contact as shown in panels (b) and (c) of Fig. 7. Mean-
while, a spike arises on the front of a ring soliton at the opposite
side (on half a period of the lump chain). The spike grows with time
and evolves into a big-amplitude lump that lags from the soliton
front, whereas the initial lump dissolves in the ring soliton. This pro-
cess can be interpreted as the phase shift of a lump chain along the
azimuthal coordinate ϕ on half of a period as a result of interaction
with a ring soliton.

Both of the aforementioned interactions are elastic. Note that if
A3 = 0 in the solutions considered above, then under the same other
parameters used in Figs. 6 and 7, we obtain a lump chain with a sin-
gle lump whose amplitude asymptotically approaches A∞ = 2.16.
The lumps move along the ray ϕ = 0. However, if A3 6= 0 as in
Figs. 6 and 7, then ring solitons asymptotically disappear as their
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FIG. 5. The interaction between two lump chains described by the auxiliary equation (3.5) with the following parameter choice
{

c = 1, β = −2, A1 = 1, A2

= −1/15, A3 = 1, A4 = −1/200, λ1 = −25/
√
6, λ2 = −24/

√
6, λ3 = 1/

√
6, λ4 =

√
6
}

. Panel (a): Three-dimensional plot; panels (b)–(d) cross sections at
ϕ = 0. (a) t = 40. (b) t = 40. (c) t = 73. (d) t = 100.

amplitudes gradually decrease Ar ∼ r−2/3, whereas lumps stabilize
and move with the constant amplitudes A∞ = 2.16.

In general, the interaction of n1 lump chains and n2 ring
solitons can be described by the auxiliary function (2.3) with

ψl = χ∗
l =

A2l−1

3
√

r
Ai

(

τ − 12λ2l−1

3
√

12r

)

eiλ2l−1θ

+
A2l

3
√

r
Ai

(

τ − 12λ2l

3
√

12r

)

eiλ2lθ , l ≤ n1,

(4.3)

ψj = χ∗
j =

Aj

3
√

r
Ai

(

t − 12λj

3
√

12r

)

eiλjθ , 2n1 < j ≤ 2n1 + n2.

V. RESONANT SOLUTIONS

In this subsection, we present the “abnormal,” alias resonant,
interactions of lump chains and ring solitons. Abnormal interactions
pertain to the cases when nonlinear entities (solitons or lumps) do
not re-emerge after the interaction with each other or when they

emerge from other entities or, inversely, can be absorbed by other
entities. The abnormal interaction caused by velocity resonance
results in slower changes in the distances between the interacting
solitary waves compared to normal interactions.12–14 On the other
hand, the interaction caused by an infinite phase shift during colli-
sions leads to significantly more complicated changes in the distance
between entities; for instance, this can give rise to the formation of
Y-shaped solitons or stable Y-shaped lump chains that move at a
constant speed. Additionally, this can lead to the creation of reso-
nances between two weakly interacting plane waves and transient
lumps.11,15,16 We start with the simplest case of such an interaction,
which describes the absorption of a lump chain by a ring soliton.
This is a cylindrical analog of resonant interaction known for the
conventional KP1 equation.6,10,11

A. Absorption of a lump chain by a ring soliton

This type of resonant interaction is described by the auxiliary
function (2.4) with n = 1, p1 > 0, and functions ψ1 and χ1 pre-
sented by Eq. (3.1). The explicit form of the auxiliary function 0
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FIG. 6. The exchange interaction between a lump chain consisting of only one lump on a period and a ring wave. (a) t = 1872, (b) t = 2952, (c) t = 3096, and (d)
t = 3816. This solution was generated through the auxiliary function (4.1) with the following parameters: {c = 1/12, β = −3, A1 = 1, A2 = −1/80, A3 = 107, λ1 =
0, λ2 = 1, λ3 = −1/2

}

. (a) t = 1872. (b) t = 2952. (c) t = 3096. (d) t = 3816.

in this case is

0 = p1 +
3
√

12A2
1

3
√

r

{

[

Ai′ (z1)
]2 − z1Ai(z1)

2
}

+
3
√

12A2
2

3
√

r

×
{

[

Ai′ (z2)
]2 − z2Ai(z2)

2
}

+
2A1A2

3
√

12 (λ2 − λ1)

×
[

Ai′ (z2)Ai (z1)− Ai′ (z1)Ai (z2)
]

cos [(λ1 − λ2) θ] , (5.1)

where A1 = 1, A2 is any nonzero real number from the interval
(−1, 1) and 0 < p1 ≪ A1. [A solution with A2 = 1 describes a
decaying ripplon (see Fig. 4) instead of a constant-amplitude lump
chain.]

The resonance phenomenon described by Eq. (5.1) looks as
follows. At the initial moment, there is a gradually decaying circu-
lar soliton moving outward; its amplitude decays as A ∼ r−2/3. In
front of the cylindrical soliton at some distance, there is a lump

chain composed of m1 = |λ2 − λ1|
√

6cσ 2 (2/βc)1/3 lumps as shown
in Fig. 8(a). As time elapses, a ring soliton that moves faster than the
lump chain approaches the chain and merges with it [see Figs. 8(b)
and 8(c)]. Then, the lumps sitting on the soliton gradually dissolve
in it, and only a circular soliton further moves at infinity as shown
in Fig. 8(d).

B. Emission of a lump chain by a ring soliton

There is an inverse phenomenon when a ring soliton emits
a lump chain. This process is described by the following auxiliary
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FIG. 7. The adsorption–extraction interaction between a lump chain consisting of only one lump on a period and a ring wave. (a) t = 1944, (b) t = 2808, (c) t = 3312, and
(d) t = 4176. This solution was generated through the auxiliary function (4.1) with the following parameters:

{

c = 1/12, β = −3, A1 = 1, A2 = −1/80, A3 = 106, λ1

= 0, λ2 = 1, λ3 = 1/3
}

. (a) t = 1944. (b) t = 2808. (c) t = 3312. (d) t = 4176.

function:

0 =
∣

∣

∣

∣

〈ψ1,χ1〉 〈ψ1,χ2〉
〈ψ2,χ1〉 1 + 〈ψ2,χ2〉

∣

∣

∣

∣

=
∣

∣

∣

∣

�11 +�12 +�21 +�22 �11 +�21

�11 +�12 p2 +�11

∣

∣

∣

∣

,

= p2 (�11 +�12 +�21)+�22�11 −�21�12 +�22, (5.2)

with

ψ1 = χ∗
1 =

A1

3
√

r
Ai

(

t − 12λ1

3
√

12r

)

eiλ1θ +
A2

3
√

r
Ai

(

t − 12λ2

3
√

12r

)

eiλ2θ ,

(5.3)

ψ2 = χ∗
2 =

A1

3
√

r
Ai

(

t − 12λ1

3
√

12r

)

eiλ1θ ,

where A1 = 1, A2 is any nonzero real number from the interval
(−1, 1), 0 < p2 ≪ A1, and functions�lj are given in Eq. (3.7).
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FIG. 8. Absorption of a lump chain by a circular soliton; the process described by Eq. (5.1) with the following parameters
{

c = 1, β = −2, A1 = 1, A2 = −10−2, λ1

= −3/
√
6, λ2 = 0, p1 = 10−15

}

. (a) t = 40, (b) t = 83, (c) t = 93, and (d) t = 125. (a) t = 40. (b) t = 83. (c) t = 93. (d) t = 125.

The resonance phenomenon described by Eq. (5.2) looks as
follows. At the initial moment, there is only a gradually decay-
ing circular soliton moving outward; its amplitude decays as
A ∼ r−2/3; this is shown in Fig. 9(a). As time elapses, a few spikes

m1 = |λ2 − λ1|
√

6cσ 2 (2/βc)1/3 gradually emerge on the soliton;
the spikes are equally spaced on the soliton front. The spikes
gradually evolve into lumps of big amplitudes that move slower
than the small-amplitude ring soliton. Lumps and solitons sepa-
rate from each other and move further independently as shown
in Fig. 9.

C. Fusion of two lump chains

Resonance can also occur between circular lump chains. This
process is described by Eq. (2.3), with N = 1, p1 = 0, and

ψ1 = χ∗
1 =

A1

3
√

r
Ai

(

t − 12λ1

3
√

12r

)

eiλ1θ +
A2

3
√

r
Ai

(

t − 12λ2

3
√

12r

)

eiλ2θ

+
A3

3
√

r
Ai

(

t − 12λ3

3
√

12r

)

eiλ3θ . (5.4)
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FIG. 9. The circular wave has emitted a chain composed of three lump waves: Eq. (5.2) with parameter selection
{

c = 1, β = −2, A1 = 1, A2 = −10−2, λ1

= −3/
√
6, λ2 = 0, p1 = 10−15

}

. (a) t = 30, (b) t = 80, (c) t = 100, and (d) t = 130. (a) t = 30. (b) t = 80. (c) t = 100. (d) t = 130.

The auxiliary function corresponding to this resonance phe-
nomenon can be expressed as follows:

0 = �11 +�12 +�13 +�21 +�22 +�23 +�31 +�32 +�33,
(5.5)

where �lj are given by Eq. (3.7). Figure 10 illustrates this reso-
nance phenomenon. At t = 3672, a lump chain consisting of three
lumps of a smaller amplitude A = 0.65 is located closer to the cen-
ter. The lumps are equally spaced on the azimuthal variable where
ϕ = ±π/3 and π . Another lump chain consisting of two lumps with
the amplitude 1.56 is located further from the center at the angles
ϕ = ±π/2 [see Fig. 10(a)]. As time elapses, the faster-moving three-
lump chain gradually approaches the slower-moving two lump
chains and merges with it as shown in panels (b) and (c). The ampli-
tude of the two lump chains gradually decreases, while the amplitude

of the three-lump chain gradually increases. Eventually, a five-lump
chain forms with equally spaced lumps of equal amplitudes 1.18, as
shown in Fig. 10(d).

D. Fission of a lump chain onto two lump chains

The inverse effect to the lump chain fusion, the fission of a lump
chain onto two lump chains, is described by the following auxiliary
function:

0 =
∣

∣

∣

∣

〈ψ1,χ1〉 〈ψ1,χ2〉
〈ψ2,χ1〉 〈ψ2,χ2〉

∣

∣

∣

∣

(5.6)

=
∣

∣

∣

∣

�11 +�12 +�21 +�22 �12 +�13 +�22 +�23

�21 +�22 +�31 +�32 �22 +�23 +�32 +�33

∣

∣

∣

∣

,
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FIG. 10. Fusion of two lump chains described by the auxiliary function (5.5) with the following parameters
{

c = 1/12, β = −3, A1 = 1, A2 = (1/3) · 10−3, A3

= 10−7, λ1 = 0, λ2 = 2, λ3 = 5
}

. (a) t = 3672, (b) t = 4320, (c) t = 4680, and (d) t = 6120. (a) t = 3672. (b) t = 4320. (c) t = 4680. (d) t = 6120.

where�lj are the same function given by Eq. (3.7) with

ψ1 = χ∗
1 =

A1

3
√

r
Ai

(

t − 12λ1

3
√

12r

)

eiλ1θ +
A2

3
√

r
Ai

(

t − 12λ2

3
√

12r

)

eiλ2θ ,

ψ2 = χ∗
2 =

A2

3
√

r
Ai

(

t − 12λ2

3
√

12r

)

eiλ2θ +
A3

3
√

r
Ai

(

t − 12λ3

3
√

12r

)

eiλ3θ .

(5.7)

Figure 11 illustrates the process of the original chain disinte-
gration onto two lump chains based on the auxiliary function (5.6).
In panel (a), a lump chain with an amplitude of 1.10 and a period of

2π/5 is shown at t = 2448. However, there is a hidden small per-
turbation that becomes gradually developing. As time progresses,
the amplitudes of two lumps gradually increase, while the ampli-
tudes of the other three lumps slowly decrease as shown in panels
(b) and (c). The amplitudes of growing lumps eventually increase
up to 1.95, while the amplitudes of decreasing lumps stabilize
at 0.72.

Lumps with different amplitudes move at different speeds so
that small-amplitude lumps move ahead. Thus, asymptotically, two
equally spaced chains are formed, outer with three lumps, and inner
with two lumps. This process resembles plane chain disintegration
within the conventional KP1 equation.6,10,11

Chaos 34, 013132 (2024); doi: 10.1063/5.0175716 34, 013132-12

Published under an exclusive license by AIP Publishing

 23 January 2024 00:33:13

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 11. Fusion of a lump chain onto two lump chains described by the auxiliary function (5.6) with the following parameters
{

c = 1/12, β = −3, A1 = 1, A2 = (1/3) ·
10−3, A3 = 10−7, λ1 = 0, λ2 = 2, λ3 = 5

}

. (a) t = 2448, (b) t = 3528, (c) t = 4104, and (d) t = 5760. (a) t = 2448. (b) t = 3528. (c) t = 4104. (d) t = 5760.

VI. CONCLUSION

In two parts of this study, we investigated solutions to the
cylindrical Kadomtsev–Petviashvili equation. It was demonstrated
that physically meaningful solutions should be presented in the
original variables [see Eq. (1.1)]; otherwise, solutions presented in
the “standard variables,” Eq. (1.2), can be confusing and not sat-
isfying boundary conditions.3 In Part I of this study,1 we studied
axisymmetric solutions and presented two types of soliton solutions
described by Airy functions of the first and second kinds, the Ai- and
Bi-solitons derived for the first time by Calogero and Degasperis17,18

and Nakamura and Chen.19 Such solutions are described by the
cylindrical Kortweg–de Vries equation, which is a reduced version
of the cKP equation. Following Calogero and Degasperis,17 we call
these solutions “solitons” as they wrote that solutions that they
constructed “are in some sense the analogous of the single-soliton
solutions (although they are not quite localized, having a slowly

vanishing wiggling tail).” Our analysis shows that they really have
many features of KdV solitons. We also presented self-similar solu-
tions to the cKdV equation earlier derived by Johnson in application
to the water wave theory.2,20

Ring solitons are subject to modulation instability with respect
to the azimuthal variable in media with positive dispersion. Our
estimates and numerical modeling have confirmed that the insta-
bility indeed occurs, and in the course of its development, a chain
of fully localized two-dimensional structures (lumps) emerge from
a circular soliton front. In Part II of our study, by means of the
Darboux–Matveev transform,3 we found an exact solution describ-
ing lump creation. Then, we found many other interesting solutions
describing “normal” and “anomalous” interactions of lump chains
with each other and with ring solitons. In addition to that, we also
derived solutions describing decaying lumps and lump chains of
complex spatial structure dubbed ripplons. All these solutions can
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be relevant to many physical situations when nonlinear waves prop-
agate in media with positive dispersion (plasma, solids, membranes,
etc.).

In the conclusion, we list several issues that can be studied
in the nearest perspective. Among them, the existence of multi-
lump structures, such as those that were found in the conventional
KP1 equation,21–24 and normal and anomalous interactions between
various structures.10–16,22 Separately, we can mention a study of
converging waves in the cylindrical geometry. This problem is top-
ical for plasma wave experiments.25,26 According to the preliminary
consideration,27 in such a case, one can expect modulation instability
of converging circular waves even in media with negative dispersion.
This study can be further extended to the important cases of physical
significance but not described by completely integrable equations,
such as the cylindrical Benjamin–Ono, modified Korteweg–de Vries
equations, the spherical Korteweg–de Vries equation, etc. At least,
asymptotic and numerical methods can shed light on the dynamics
of nonlinear waves in such cases.
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