460510. Recommender systems


Title460510. Recommender systems
Parent4605. Data management and data science

Latest research outputs

Sort by Date Title
A new approach to predict daily pH in rivers based on the 'a trous' redundant wavelet transform algorithm
Rajaee, Taher, Ravansalar, Masoud, Adamowski, Jan F. and Deo, Ravinesh C.. 2018. "A new approach to predict daily pH in rivers based on the 'a trous' redundant wavelet transform algorithm." Water, Air and Soil Pollution: an international journal of environmental pollution. 229 (3). https://doi.org/10.1007/s11270-018-3715-3

Article

Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions
Fallah, Seyedeh Narjes, Deo, Ravinesh Chand, Shojafar, Mohammad, Conti, Mauro and Shamshirband, Shahaboddin. 2018. "Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions." Energies. 11 (3). https://doi.org/10.3390/en11030596

Article

Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
Al-Musaylh, Mohanad S., Deo, Ravinesh C., Li, Yan and Adamowski, Jan F.. 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting." Applied Energy. 217, pp. 422-439. https://doi.org/10.1016/j.apenergy.2018.02.140

Article

Application of the hybrid artificial neural network coupled with rolling mechanism and grey model algorithms for streamflow forecasting over multiple time horizons
Yaseen, Zaher Mundher, Fu, Minglei, Wang, Chen, Mohtar, Wan Hanna Melini Wan, Deo, Ravinesh C. and El-Shafie, Ahmed. 2018. "Application of the hybrid artificial neural network coupled with rolling mechanism and grey model algorithms for streamflow forecasting over multiple time horizons." Water Resources Management. 32 (5), pp. 1883-1899. https://doi.org/10.1007/s11269-018-1909-5

Article

Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
Al-Musaylh, Mohanad S., Deo, Ravinesh C., Adamowski, Jan F. and Li, Yan. 2018. "Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia." Advanced Engineering Informatics: the science of supporting knowledge-intensive activities. 35 (C), pp. 1-16. https://doi.org/10.1016/j.aei.2017.11.002

Article

Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms
Barzegar, Rahim, Moghaddam, Asghar Asghari, Deo, Ravinesh, Fijani, Elham and Tziritis, Evangelos. 2018. "Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms." Science of the Total Environment. 621, pp. 697-712. https://doi.org/10.1016/j.scitotenv.2017.11.185

Article

Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran
Ghorbani, M. A., Deo, Ravinesh C., Yaseen, Zaher Mundher, Kashani, Mahsa H. and Mohammadi, Babak. 2018. "Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran." Theoretical and Applied Climatology. 133 (3-4), pp. 1119-1131. https://doi.org/10.1007/s00704-017-2244-0

Article

Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City
Deo, Ravinesh C. and Samui, Pijush. 2017. "Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City." Journal of Hydrologic Engineering. 22 (6), pp. 1-15. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001506

Article

Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
Yaseen, Zaher Mundher, Deo, Ravinesh C., Hilal, Ameer, Abd, Abbas M., Bueno, Laura Cornejo, Salcedo-sanz, Sancho and Nehdi, Moncef L.. 2018. "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model." Advances in Engineering Software. 115, pp. 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004

Article

Synthetic retrieval of hourly net ecosystem exchange using the neural network model with combined MI and GOCI geostationary sensor datasets and ground-based measurements
Yeom, Jong-Min, Deo, Ravinesh, Chun, Junghwa, Hong, Jinkyu, Kim, Dong-Su, Han, Kyung-Soo and Cho, Jaeil. 2017. "Synthetic retrieval of hourly net ecosystem exchange using the neural network model with combined MI and GOCI geostationary sensor datasets and ground-based measurements." International Journal of Remote Sensing. 38 (23), pp. 7441-7456. https://doi.org/10.1080/01431161.2017.1375573

Article

Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
Deo, Ravinesh C. and Sahin, Mehmet. 2017. "Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland." Renewable and Sustainable Energy Reviews. 72, pp. 828-848. https://doi.org/10.1016/j.rser.2017.01.114

Article

Big data in engineering applications
Roy, Sanjiban Sekhar, Samui, Pijushi, Deo, Ravinesh and Ntalampiras, Stalampiras (ed.) 2018. Big data in engineering applications. Singapore. Springer.

Edited book

Handbook of research on predictive modeling and optimization methods in science and engineering
Kim, Dookie, Roy, Sanjiban Sekhar, Lansivaara, Tim, Deo, Ravinesh C. and Samui, Pijush (ed.) 2018. Handbook of research on predictive modeling and optimization methods in science and engineering. United States. IGI Global.

Edited book

Complex networks approach for EEG signal sleep stages classification
Diykh, Mohammed and Li, Yan. 2016. "Complex networks approach for EEG signal sleep stages classification." Expert Systems with Applications. 63, pp. 241-248. https://doi.org/10.1016/j.eswa.2016.07.004

Article

A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
Deo, Ravinesh C., Wen, Xiaohu and Feng, Qi. 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset." Applied Energy. 168, pp. 568-593. https://doi.org/10.1016/j.apenergy.2016.01.130

Article

Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models
Deo, Ravinesh C., Samui, Pijush and Kim, Dookie. 2016. "Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models." Stochastic Environmental Research and Risk Assessment. 30 (6), pp. 1769-1784. https://doi.org/10.1007/s00477-015-1153-y

Article

Using association rules to make rule-based classifiers robust
Hu, Hong and Li, Jiuyong. 2005. "Using association rules to make rule-based classifiers robust." Williams, Hugh E. and Dobbie, Gillian (ed.) ADC 2005: 16th Australasian Database Conference. Newcastle, Australia 31 Jan - 03 Feb 2005 Sydney, Australia.

Paper