Experimental study on z-pin bridging law by pullout test

Article


Dai, Shao-Cong, Yan, Wenyi, Liu, Hong-Yuan and Mai, Yiu-Wing. 2004. "Experimental study on z-pin bridging law by pullout test." Composites Science and Technology. 64 (16), pp. 2451-2457. https://doi.org/10.1016/j.compscitech.2004.04.005
Article Title

Experimental study on z-pin bridging law by pullout test

ERA Journal ID4884
Article CategoryArticle
AuthorsDai, Shao-Cong (Author), Yan, Wenyi (Author), Liu, Hong-Yuan (Author) and Mai, Yiu-Wing (Author)
Journal TitleComposites Science and Technology
Journal Citation64 (16), pp. 2451-2457
Number of Pages7
Year2004
PublisherElsevier
Place of PublicationOxford, United Kingdom
ISSN0266-3538
1879-1050
Digital Object Identifier (DOI)https://doi.org/10.1016/j.compscitech.2004.04.005
Web Address (URL)http://www.sciencedirect.com/science/article/pii/S0266353804001411
Abstract

This paper presents an experimental study on the evaluation of bridging law for a z-pin. The relationship between the z-pin bridging force and its displacement was measured by z-pin pullout tests. The tests were carried out using three types of samples with: single small pin; 3X3 small-pins (three columns x three rows) and 3X3 big-pins. For 3 X 3 small-pins samples, a typical pullout curve with initial bonding, debonding and frictional sliding was obtained. A high peak value of the debonding force was reached before z-pin debonding started. After debonding was initiated, the pull-out force dropped rapidly to a lower value, the pins were then pulled out steadily against friction. However, for samples with 3 X 3 big-pins, it was difficult to discern the peak debonding force. The major results of this study are expected to provide a better physical understanding of the mechanics and mechanisms of z-pin bridging, aside from an efficient and accurate methodology to measure the crack-bridging law.

KeywordsZ-pin reinforcement; pullout test; bridging law; interfacial debonding; interfacial friction
ANZSRC Field of Research 2020400504. Construction engineering
401602. Composite and hybrid materials
490109. Theoretical and applied mechanics
Public Notes

© 2004 Elsevier Ltd. All rights reserved. Published version deposited in accordance with the copyright policy of the publisher.

Byline AffiliationsUniversity of Sydney
Computational Engineering and Science Research Centre
Permalink -

https://research.usq.edu.au/item/9x74z/experimental-study-on-z-pin-bridging-law-by-pullout-test

Download files


Submitted Version
zpin-experiment-yan.pdf
File access level: Anyone

  • 2354
    total views
  • 852
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites
Guo, Bi-Fan, Wang, Peng-Huan, Cao, Cheng-Fei, Qu, Zhang-Hao, Lv, Ling-Yu, Zhang, Guo-Dong, Gong, Li-Xiu, Song, Pingan, Gao, Jie-Feng, Mai, Yiu-Wing and Tang, Long-Cheng. 2022. "Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites." Composites Part B: Engineering. 247. https://doi.org/10.1016/j.compositesb.2022.110290
Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer
Xu, Zhiguang, Song, Pingan, Zhang, Jin, Guo, Qipeng and Mai, Yiu-wing. 2018. "Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer." Composites Science and Technology. 168, pp. 363-370. https://doi.org/10.1016/j.compscitech.2018.10.020
Numerical study on buckling of Z-pinned composite laminates
Yan, Wenyi, Liu, Hong-Yuan and Mai, Yiu-Wing. 2004. "Numerical study on buckling of Z-pinned composite laminates." Ye, L., Mai, Yiu-Wing and Su, Z. (ed.) 4th Asian-Australasian Conference on Composite Materials (ACCM 4). Sydney, Australia 06 - 09 Jul 2004 Cambridge, United Kingdom. https://doi.org/10.1016/B978-1-85573-831-7.50056-0
New trends in information technology in education
Lu, Yanping, Liu, Hong, Li, Shaozi and Yong, Jianming. 2011. "New trends in information technology in education ." International Journal of Distance Education Technologies. 9 (1), pp. i-iv.
Investigation of a hydraulic impact: a technology in rock breaking
Genet, Martin, Yan, Wenyi and Tran-Cong, Thanh. 2009. "Investigation of a hydraulic impact: a technology in rock breaking." Archive of Applied Mechanics. 79 (9), pp. 825-841. https://doi.org/10.1007/s00419-008-0256-z
Z-pin bridging in composite laminates and some related problems
Liu, Hong-Yuan, Yan, Wenyi and Mai, Yiu-Wing. 2006. "Z-pin bridging in composite laminates and some related problems." Australian Journal of Mechanical Engineering. 3 (1), pp. 11-19.
Mechanics examination on the wear behaviour of shape memory alloys
Yan, Wenyi. 2005. "Mechanics examination on the wear behaviour of shape memory alloys." Xie, Mike, Mouritz, Adrian, Khatibi, Akbar Afaghi, Gardiner, Craig and Chiu, Wing Kong (ed.) 4th Australasian Congress on Applied Mechanics (ACAM 2005). Melbourne, Australia 16 - 18 Feb 2005 North Melbourne, Vic, Australia.
A micromechanics investigation of sliding wear in coated components
Yan, Wenyi, Busso, Esteban P. and O'Dowd, Noel P.. 2000. "A micromechanics investigation of sliding wear in coated components." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 456 (2002), pp. 2387-2407. https://doi.org/10.1098/rspa.2000.0617
Numerical study of sliding wear caused by a loaded pin on a rotating disc
Yan, Wenyi, O'Dowd, Noel P. and Busso, Esteban P.. 2002. "Numerical study of sliding wear caused by a loaded pin on a rotating disc." Journal of the Mechanics and Physics of Solids. 50 (3), pp. 449-470. https://doi.org/10.1016/S0022-5096(01)00093-X
Mode II delamination toughness of z-pinned laminates
Yan, Wenyi, Liu, Hong-Yuan and Mai, Yiu-Wing. 2004. "Mode II delamination toughness of z-pinned laminates." Composites Science and Technology. 64 (13-14), pp. 1937-1945. https://doi.org/10.1016/j.compscitech.2004.02.008
Numerical study on the mode I delamination toughness of z-pinned laminates
Yan, Wenyi, Liu, Hong-Yuan and Mai, Yiu-Wing. 2003. "Numerical study on the mode I delamination toughness of z-pinned laminates." Composites Science and Technology. 63 (10), pp. 1481-1493. https://doi.org/10.1016/S0266-3538(03)00167-2
Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys
Yan, Wenyi, Wang, Chun Hui, Zhang, Xin Ping and Mai, Yiu-Wing. 2003. "Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys." Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing. 354 (1-2), pp. 146-157. https://doi.org/10.1016/S0921-5093(02)00941-3