Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

Paper


Ziri-Castro, K. I., Evans, N. E. and Scanlon, W. G.. 2006. "Propagation modelling and measurements in a populated indoor environment at 5.2 GHz." 1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications. Sydney, Australia 13 - 16 Mar 2006
Paper/Presentation Title

Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

Presentation TypePaper
AuthorsZiri-Castro, K. I. (Author), Evans, N. E. (Author) and Scanlon, W. G. (Author)
Journal or Proceedings TitleProceedings of the 1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications
Number of Pages8
Year2006
ISBN0977520005
Web Address (URL) of Paperhttp://auswireless.eng.uts.edu.au/index.htm
Conference/Event1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications
Event Details
1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communications
Event Date
13 to end of 16 Mar 2006
Event Location
Sydney, Australia
Abstract

There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2.

Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz.

Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis.

The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians.

A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz.

ANZSRC Field of Research 2020400699. Communications engineering not elsewhere classified
Public Notes

Deposited in accordance with the copyright policy of the publisher. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. Copyright 2006 IEEE. Personal use of this material is permitted. This material is posted here with permission of the IEEE. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Byline AffiliationsDepartment of Mathematics and Computing
University of Ulster, United Kingdom
Queen's University Belfast, United Kingdom
Permalink -

https://research.usq.edu.au/item/9y228/propagation-modelling-and-measurements-in-a-populated-indoor-environment-at-5-2-ghz

Download files

  • 2242
    total views
  • 845
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Capacity analysis of MIMO-OFDM broadband channels in populated indoor environments
DasGupta, Jishu, Ziri-Castro, Karla and Suzuki, Hajime. 2007. "Capacity analysis of MIMO-OFDM broadband channels in populated indoor environments." 7th International Symposium on Communications and Information Technologies (ISCIT 2007:) . Sydney, Australia 16 - 19 Oct 2007 Piscataway, NJ. United States. https://doi.org/10.1109/ISCIT.2007.4392029
Channel modelling and propagation measurements for a bodyworn 5.2 GHz terminal moving in the indoor environment
Ziri-Castro, Karla, Scanlon, William, Feustle, R. and Evans, Noel. 2003. "Channel modelling and propagation measurements for a bodyworn 5.2 GHz terminal moving in the indoor environment." 12th IEE International Conference on Antennas and Propagation. Exeter, United Kingdom 31 Mar - 03 Apr 2003 United Kingdom.
Measured pedestrian movement and bodyworn terminal effects for the indoor channel at 5.2 GHz
Ziri-Castro, Karla, Scanlon, William and Evans, Noel. 2003. "Measured pedestrian movement and bodyworn terminal effects for the indoor channel at 5.2 GHz." European Transactions on Telecommunications. 14 (6), pp. 529-538. https://doi.org/10.1002/ett.952
Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver
Ziri-Castro, K. I., Scanlon, W. G. and Evans, N. E.. 2004. "Indoor radio channel characterization and modeling for a 5.2-GHz bodyworn receiver." IEEE Antennas and Wireless Propagation Letters. 3 (1), pp. 219-222.
Prediction of variation in MIMO channel capacity for the populated indoor environment using a radar cross-section-based pedestrian model
Ziri-Castro, Karla I., Scanlon, William G. and Evans, Noel E.. 2005. "Prediction of variation in MIMO channel capacity for the populated indoor environment using a radar cross-section-based pedestrian model." IEEE Transactions on Wireless Communications. 4 (3), pp. 1186-1194.
Dynamic range analysis on MIMO-OFDM broadband channels in a populated time-varying indoor environment
Das Gupta, Jishu, Ziri-Castro, Karla and Suzuki, Hajime. 2008. "Dynamic range analysis on MIMO-OFDM broadband channels in a populated time-varying indoor environment." Green, Richard (ed.) Australasian Telecommunication Networks and Applications Conference (ATNAC 2007): Next Generation Networks: Enabling Closer International Cooperation. Christchurch, New Zealand 02 - 05 Dec 2007 Piscataway, NJ. United States. https://doi.org/10.1109/ATNAC.2007.4665252
Correlation analysis on MIMO-OFDM channels in populated time varying indoor environment
Das Gupta, Jishu, Ziri-Castro, Karla and Suzuki, Hajime. 2007. "Correlation analysis on MIMO-OFDM channels in populated time varying indoor environment ." 10th Australian Symposium on Antennas. Sydney, Australia 14 - 15 Feb 2007 Australia.
Time variation characteristics of MIMO-OFDM broadband channels in populated indoor environments
Das Gupta, Jishu, Ziri-Castro, Karla and Addie, Ron. 2006. "Time variation characteristics of MIMO-OFDM broadband channels in populated indoor environments." Ellershaw, John (ed.) Australian Telecommunications Networks and Applications Conference (ATNAC 2006). Melbourne, Australia 04 - 06 Dec 2006 Melbourne, Australia.
Time variation characteristics of wireless broadband channel in urban area
Suzuki, Hajime, Wilson, Carol D. and Ziri-Castro, Karla. 2006. "Time variation characteristics of wireless broadband channel in urban area." 1st European Conference on Antennas and Propagation. Nice, France 06 - 10 Nov 2006 Nice, France.