A survey on deep reinforcement learning for audio‑based applications

Article


Latif, Siddique, Cuayahuitl, Heriberto, Pervez, Farrukh, Shamshad, Fahad, Ali, Hafiz Shehbaz and Cambria, Erik. 2023. "A survey on deep reinforcement learning for audio‑based applications." Artificial Intelligence Review: an international survey and tutorial journal. 56 (3), p. 2193–2240. https://doi.org/10.1007/s10462-022-10224-2
Article Title

A survey on deep reinforcement learning for audio‑based applications

ERA Journal ID17763
Article CategoryArticle
AuthorsLatif, Siddique (Author), Cuayahuitl, Heriberto (Author), Pervez, Farrukh (Author), Shamshad, Fahad (Author), Ali, Hafiz Shehbaz (Author) and Cambria, Erik (Author)
Journal TitleArtificial Intelligence Review: an international survey and tutorial journal
Journal Citation56 (3), p. 2193–2240
Number of Pages48
Year2023
Place of PublicationNetherlands
ISSN0269-2821
1573-7462
Digital Object Identifier (DOI)https://doi.org/10.1007/s10462-022-10224-2
Web Address (URL)https://link.springer.com/article/10.1007/s10462-022-10224-2
Abstract

Deep reinforcement learning (DRL) is poised to revolutionise the field of artificial intelligence (AI) by endowing autonomous systems with high levels of understanding of the real world. Currently, deep learning (DL) is enabling DRL to effectively solve various intractable problems in various fields including computer vision, natural language processing, healthcare, robotics, to name a few. Most importantly, DRL algorithms are also being employed in audio signal processing to learn directly from speech, music and other sound signals in order to create audio-based autonomous systems that have many promising applications in the real world. In this article, we conduct a comprehensive survey on the progress of DRL in the audio domain by bringing together research studies across different but related areas in speech and music. We begin with an introduction to the general field of DL and reinforcement learning (RL), then progress to the main DRL methods and their applications in the audio domain. We conclude by presenting important challenges faced by audio-based DRL agents and by highlighting open areas for future research and investigation. The findings of this paper will guide researchers interested in DRL for the audio domain.

Keywords(Embodied) dialogue; Deep learning; Emotion recognition; Reinforcement learning; Speech recognition
ANZSRC Field of Research 2020461105. Reinforcement learning
461103. Deep learning
461104. Neural networks
Byline AffiliationsUniversity of Southern Queensland
University of Lincoln, United Kingdom
National University of Sciences and Technology, Pakistan
Information Technology University, Pakistan
Emulation AI, Australia
Nanyang Technological University, Singapore
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q77yw/a-survey-on-deep-reinforcement-learning-for-audio-based-applications

Download files


Published Version
s10462-022-10224-2.pdf
License: CC BY 4.0
File access level: Anyone

  • 50
    total views
  • 32
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
Ullah, Zahid, Akram, Muhammad, Latif, Siddique, Khan, Asifullah and Gwak, Jeonghwan. 2023. "SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation." Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-36311-0
Densely attention mechanism based network for COVID-19 detection in chest X-rays
Ullah, Zahid, Usman, Muhammad, Latif, Siddique and Gwak, Jeonghwan. 2023. "Densely attention mechanism based network for COVID-19 detection in chest X-rays." Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-022-27266-9
Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation
Rehman, Azka, Usman, Muhammad, Shahid, Abdullah, Latif, Siddique and Qadir, Junaid. 2023. "Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation." Sensors. 23 (4). https://doi.org/10.3390/s23042346
Multitask Learning From Augmented Auxiliary Data for Improving Speech Emotion Recognition
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja and Schuller, Bjorn W.. 2023. "Multitask Learning From Augmented Auxiliary Data for Improving Speech Emotion Recognition ." IEEE Transactions on Affective Computing. 14 (4), pp. 3164-3176. https://doi.org/10.1109/TAFFC.2022.3221749
Self Supervised Adversarial Domain Adaptation for Cross-Corpus and Cross-Language Speech Emotion Recognition
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja and Schuller, Bjorn. 2023. "Self Supervised Adversarial Domain Adaptation for Cross-Corpus and Cross-Language Speech Emotion Recognition." IEEE Transactions on Affective Computing. 14 (3), pp. 1912-1926. https://doi.org/10.1109/TAFFC.2022.3167013
Multi-Task Semi-Supervised Adversarial Autoencoding for Speech Emotion Recognition
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja, Epps, Julien and Schuller, Bjorn W.. 2022. "Multi-Task Semi-Supervised Adversarial Autoencoding for Speech Emotion Recognition." IEEE Transactions on Affective Computing. 13 (2), pp. 992-1004. https://doi.org/10.1109/TAFFC.2020.2983669
Privacy Enhanced Speech Emotion Communication using Deep Learning Aided Edge Computing
Ali, Hafiz Shehbaz, Hassan, Fakhar ul, Latif, Siddique, Manzoor, Habib Ullah and Qadir, Junaid. 2021. "Privacy Enhanced Speech Emotion Communication using Deep Learning Aided Edge Computing." IEEE International Conference on Communications Workshops (2021). Montreal, Canada 14 - 23 Jun 2021 United States. https://doi.org/10.1109/ICCWorkshops50388.2021.9473669
Controlling Prosody in End-to-End TTS: A Case Study on Contrastive Focus Generation
Latif, Siddique, Kim, Inyoung, Calapodescu, Ioan and Besacier, Laurent. 2021. "Controlling Prosody in End-to-End TTS: A Case Study on Contrastive Focus Generation." 25th Conference on Computational Natural Language Learning (CoNLL 2021). Punta Cana, Dominican Republic 10 - 11 Nov 2021 Stroudsburg, Pennsylvania. https://doi.org/10.18653/v1/2021.conll-1.42
Deep Representation Learning for Speech Emotion Recognition
Latif, Siddique. 2022. Deep Representation Learning for Speech Emotion Recognition. PhD by Publication Doctor of Philosophy (DPHD). University of Southern Queensland. https://doi.org/10.26192/w8w00
Survey of Deep Representation Learning for Speech Emotion Recognition
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja, Qadir, Junaid and Schuller, Bjorn. 2021. "Survey of Deep Representation Learning for Speech Emotion Recognition." IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2021.3114365
Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks, and Cross-corpus Setting for Speech Emotion Recognition
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja and Schuller, Bjorn W.. 2020. "Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks, and Cross-corpus Setting for Speech Emotion Recognition." 21st Annual Conference of the International Speech Communication Association: Cognitive Intelligence for Speech Processing (INTERSPEECH 2020). Shanghai, China 25 - 29 Oct 2020 France. https://doi.org/10.21437/Interspeech.2020-3190
Augmenting Generative Adversarial Networks for Speech Emotion Recognition
Latif, Siddique, Asim, Muhammad, Rana, Rajib, Khalifa, Sara, Jurdak, Raja and Schuller, Bjorn W.. 2020. "Augmenting Generative Adversarial Networks for Speech Emotion Recognition." 21st Annual Conference of the International Speech Communication Association: Cognitive Intelligence for Speech Processing (INTERSPEECH 2020). Shanghai, China 25 - 29 Oct 2020 France. https://doi.org/10.21437/Interspeech.2020-3194
ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis
Basiri, Mohammad Ehsan, Nemati, Shahla, Abdar, Moloud, Cambria, Erik and Acharya, U. Rajendra. 2021. "ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis." Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications. 115, pp. 279-294. https://doi.org/10.1016/j.future.2020.08.005
Federated Learning for Speech Emotion Recognition Applications
Latif, Siddique, Khalifa, Sara, Rana, Rajib and Jurdak, Raja. 2020. "Federated Learning for Speech Emotion Recognition Applications." 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2020). Sydney, Australia 21 - 24 Apr 2020 United States. https://doi.org/10.1109/IPSN48710.2020.00-16
Direct modelling of speech emotion from raw speech
Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja and Epps, Julien. 2019. "Direct modelling of speech emotion from raw speech." 20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language (INTERSPEECH 2019). Graz, Austria 15 - 19 Sep 2019 France. https://doi.org/10.21437/Interspeech.2019-3252
Variational Autoencoders to Learn Latent Representations of Speech Emotion
Latif, Siddique, Rana, Rajib, Qadir, Junaid and Epps, Julien. 2018. "Variational Autoencoders to Learn Latent Representations of Speech Emotion." 19th Annual Conference of the International Speech Communication Association: Speech Research for Emerging Markets in Multilingual Societies (INTERSPEECH 2018). Hyderabad, India 02 - 06 Sep 2018 France. https://doi.org/10.21437/Interspeech.2018-1568
Transfer learning for improving speech emotion classification accuracy
Latif, Siddique, Rana, Rajib, Younis, Shahzad, Qadir, Junaid and Epps, Julien. 2018. "Transfer learning for improving speech emotion classification accuracy." 19th Annual Conference of the International Speech Communication Association: Speech Research for Emerging Markets in Multilingual Societies (INTERSPEECH 2018). Hyderabad, India 02 - 06 Sep 2018 France. https://doi.org/10.21437/Interspeech.2018-1625
Automated screening for distress: A perspective for the future
Rana, Rajib, Latif, Siddique, Gururajan, Raj, Gray, Anthony, Mackenzie, Geraldine, Humphris, Gerald and Dunn, Jeff. 2019. "Automated screening for distress: A perspective for the future." European Journal of Cancer Care. 28 (4). https://doi.org/10.1111/ecc.13033
Phonocardiographic sensing using deep learning for abnormal heartbeat detection
Latif, Siddique, Usman, Muhammad, Rana, Rajib and Qadir, Junaid. 2018. "Phonocardiographic sensing using deep learning for abnormal heartbeat detection." IEEE Sensors Journal. 18 (22), pp. 9393-9400. https://doi.org/10.1109/JSEN.2018.2870759
Mobile health in the Developing World: review of literature and lessons from a case study
Latif, Siddique, Rana, Rajib, Qadir, Junaid, Ali, Anwaar, Imran, Muhammad Ali and Younis, Muhammad Shahzad. 2017. "Mobile health in the Developing World: review of literature and lessons from a case study." IEEE Access. 5, pp. 11540-11556. https://doi.org/10.1109/ACCESS.2017.2710800