Can Clay Mimic the High Reflectivity of Briny Water Below the Martian SPLD?

Article


Cosciotti, Barbara, Mattei, Elisabetta, Brin, Alessandro, Lauro, Sebastian Emanuel, Stillman, David E., Cunje, Alister, Hickson, Dylan, Caprarelli, Graziella and Pettinelli, Elena. 2023. "Can Clay Mimic the High Reflectivity of Briny Water Below the Martian SPLD?" Journal of Geophysical Research: Planets. 128 (3). https://doi.org/10.1029/2022JE007513
Article Title

Can Clay Mimic the High Reflectivity of Briny Water Below the Martian SPLD?

ERA Journal ID210883
Article CategoryArticle
AuthorsCosciotti, Barbara, Mattei, Elisabetta, Brin, Alessandro, Lauro, Sebastian Emanuel, Stillman, David E., Cunje, Alister, Hickson, Dylan, Caprarelli, Graziella and Pettinelli, Elena
Journal TitleJournal of Geophysical Research: Planets
Journal Citation128 (3)
Article Numbere2022JE007513
Number of Pages12
Year2023
PublisherJohn Wiley & Sons
Place of PublicationUnited States
ISSN2169-9097
2169-9100
Digital Object Identifier (DOI)https://doi.org/10.1029/2022JE007513
Web Address (URL)https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JE007513
AbstractIt has recently been suggested that clay minerals, which are widespread on the Martian surface, could be the possible source of the basal bright reflections detected by MARSIS at Ultimi Scopuli, instead of briny water. This hypothesis is based on dielectric measurements on a wet Ca-Montorillonite (STx-1b) sample conducted at 230 K, which reported permittivity values (apparent permittivity of 39 at 4 MHz) compatible with the median value of 33 retrieved by MARSIS 4 MHz data inversion in the high reflectivity area. These experimental results are, however, incompatible with well-established dielectric theory and with laboratory measurements on clays, at MARSIS frequency and Martian temperatures, reported in the literature. Here, we replicate the experiment using a setup to precisely control the rate of cooling/warming and the temperature inside and outside the clay sample. We found that the rate of cooling, the position of the temperature sensor and, consequently, the thermal equilibrium between the sample and the sensor play a fundamental role in the reliability of the measurements. Our results indicate that even for a large water content in the clay sample, at 230 K and 4 MHz, the apparent permittivity is only 8.4, dropping to 4.1 at 200 K, ruling out clays as a possible source of the bright reflections detected by MARSIS at the base of the SPLD.
Keywordsclay materials; Briny Water; SPLD
ANZSRC Field of Research 2020370507. Planetary geology
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsThird University of Rome, Italy
Southwest Research Institute, United States
University of Illinois Chicago, United States
Colorado School of Mines, United States
Institute for Advanced Engineering and Space Sciences
Centre for Astrophysics
Permalink -

https://research.usq.edu.au/item/z2587/can-clay-mimic-the-high-reflectivity-of-briny-water-below-the-martian-spld

  • 33
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Thank You to Our 2023 Reviewers
Caprarelli, Graziella, Baratoux, David, Cervato, Cinzia, Diviacco, Paolo, Donea, Alina, Steven J., Gentemann, Chelle, Glaves, Helen M., Jiang, Jonathan H., Jones, Cathleen E., Maute, Astrid, Mills, Franklin P., Pryor, Sara C., Tiampo, Kristy and Xie, Zunyi. 2024. "Thank You to Our 2023 Reviewers." Earth and Space Science. 11 (4). https://doi.org/10.1029/2024EA003662
Reply to: Explaining bright radar reflections below the south pole of Mars without liquid water
Lauro, Sebastian Emanuel, Pettinelli, Elena, Caprarelli, Graziella, Guallini, Luca, Rossi, Angelo Pio, Mattei, Elisabetta, Cosciotti, Barbara, Cicchetti, Andrea, Soldovieri, Francesco, Cartacci, M., Di Paolo, F., Noschese, R. and Orosei, R.. 2023. "Reply to: Explaining bright radar reflections below the south pole of Mars without liquid water." Nature Astronomy. 7 (3), pp. 259-261. https://doi.org/10.1038/s41550-022-01871-0
Fire in the Earth System: Introduction to the Special Collection
East, Amy, AghaKouchak, Amir, Caprarelli, Graziella, Filippelli, Gabriel, Florindo, Fabio, Luce, Charles, Rajaram, Harihar, Russell, Lynn, Santin, Cristina and Santos, Isaac. 2023. "Fire in the Earth System: Introduction to the Special Collection." Journal of Geophysical Research: Earth Surface. 128 (4). https://doi.org/10.1029/2023JF007184
Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data
Lauro, Sebastian Emanuel, Pettinelli, Elena, Caprarelli, Graziella, Guallini, Luca, Rossi, Angelo Pio, Mattei, Elisabetta, Cosciotti, Barbara, Cicchetti, Andrea, Soldovieri, Francesco, Cartacci, Marco, Di Paolo, Federico, Noschese, Raffaella and Orosei, Roberto. 2021. "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data." Nature Astronomy. 5, pp. 63-70. https://doi.org/10.1038/s41550-020-1200-6
Lunar polar water resource exploration – Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques
Casanova, Sophia, Espejel, Carlos, Dempster, Andrew G., Anderson, Robert C., Caprarelli, Graziella and Saydam, Serkan. 2020. "Lunar polar water resource exploration – Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques." Planetary and Space Science. 180, pp. 1-10. https://doi.org/10.1016/j.pss.2019.104742
Partially-Saturated Brines Within Basal Ice or Sediments Can Explain the Bright Basal Reflections in the South Polar Layered Deposits
Stillman, D. E., Pettinelli, E., Lauro, S. E., Mattei, E., Caprarelli, G., Cosciotti, B., Primm, K. M. and Orosei, R.. 2022. "Partially-Saturated Brines Within Basal Ice or Sediments Can Explain the Bright Basal Reflections in the South Polar Layered Deposits." Journal of Geophysical Research: Planets. 127 (10). https://doi.org/10.1029/2022JE007398
Numerical simulations of radar echoes rule out basal CO2 ice deposits at Ultimi Scopuli, Mars
Orosei, Roberto, Caprarelli, Graziella, Lauro, Sebastian, Pettinelli, Elena, Cartacci, Marco, Cicchetti, Andrea, Cosciotti, Barbara, De Lorenzis, Alessandro, De Nunzio, Giorgio, Mattei, Elisabetta, Nenna, Carlo, Noschese, Raffaella and Soldovieri, Francesco. 2022. "Numerical simulations of radar echoes rule out basal CO2 ice deposits at Ultimi Scopuli, Mars." Icarus. 386. https://doi.org/10.1016/j.icarus.2022.115163
Assessing the role of clay and salts on the origin of MARSIS basal bright reflections
Mattei, Elisabetta, Pettinelli, Elena, Lauro, Sebastian Emanue, Stillman, David E., Cosciotti, Barbara, Marinangeli, Lucia, Tangari, Anna Chiara, Soldovieri, Francesco, Orosei, Roberto and Caprarelli, Graziella. 2022. "Assessing the role of clay and salts on the origin of MARSIS basal bright reflections." Earth and Planetary Science Letters. 579. https://doi.org/10.1016/j.epsl.2022.117370
Using MARSIS signal attenuation to assess the presence of South Polar Layered Deposit subglacial brines
Lauro, Sebastian E., Pettinelli, Elena, Caprarelli, Graziella, Baniamerian, Jamaledin, Mattei, Elisabetta, Cosciotti, Barbara, Stillman, David E., Primm, Katherine M., Soldovieri, Francesco and Orosei, Roberto. 2022. "Using MARSIS signal attenuation to assess the presence of South Polar Layered Deposit subglacial brines." Nature Communications. 13 (1). https://doi.org/10.1038/s41467-022-33389-4
Thank You to Our 2021 Reviewers
Caprarelli, Graziella, Altintas, Ilkay, Baratoux, David, Cervato, Cinzia, Diviacco, Paolo, Donea, Alina, Donnellan, Andrea, Gentemann, Chelle, Glaves, Helen M., Jiang, Jonathan H., Jones, Cathleen E., Maute, Astrid, Pirenne, Benoit, Pryor, Sara C., Tiampo, Kristy and Xie, Zunyi. 2022. "Thank You to Our 2021 Reviewers." Earth and Space Science. 9 (4). https://doi.org/10.1029/2022EA002372