Electroencephalography (EEG) is one of the most important signals recorded from humans. It can assist scientists and experts to understand the most complex part of the human body, the brain. Thus, analysing EEG signals is the most preponderant process to the problem of extracting significant information from brain dynamics. It plays a prominent role in brain studies. The EEG data are very important for diagnosing a variety of brain disorders, such as epilepsy, sleep problems, and also assisting disability patients to interact with their environment through brain computer interface (BCI). However, the EEG signals contain a huge amount of information about the brain’s activities. But the analysis and classification of these kinds of signals is still restricted. In addition, the manual examination of these signals for diagnosing related diseases is time consuming and sometimes does not work accurately. Several studies have attempted to develop different analysis and classification techniques to categorise the EEG recordings. The analysis of EEG recordings can lead to a better understanding of the cognitive process. It is used to extract the important features and reduce the dimensions of EEG data. In the classification process, machine learning algorithms are used to detect the particular class of EEG signal based on its extracted features. The performance of these algorithms, in which the class membership of the input signal is determined, can then be used to infer what event in the real-world process occurred to produce the input signal. The classification procedure has the potential to assist experts to diagnose the related brain disorders. To evaluate and diagnose neurological disorders properly, it is necessary to develop new automatic classification techniques. These techniques will help to classify different EEG signals and determine whether a person is in a good health or not. This project aims to develop new techniques to enhance the analysis and classification of different categories of EEG data. A simple random sampling (SRS) and sequential feature selection (SFS) method was developed and named the SRS_SFS method. In this method, firstly, a SRS technique was used to extract statistical features from the original EEG data in time domain. The extracted features were used as the input to a SFS algorithm for key features selection. A least square support vector machine (LS_SVM) method was then applied for EEG signals classification to evaluate the performance of the proposed approach. Secondly, a novel approach that combines optimum allocation (OA) and spectral density estimation methods was proposed to analyse EEG signals and classify an epileptic seizure. In this study, the OA technique was introduced in two levels to determine representative sample points from the EEG recordings. To reduce the dimensions of sample points and extract representative features from each OA sample segment, two power spectral density estimation methods, periodogram and autoregressive, were used. At the end, three popular machine learning methods (support vector machine (SVM), quadratic discriminant analysis, and k-nearest neighbor (k-NN)) were employed to evaluate the performance of the suggested algorithm. Additionally, a Tunable Q-factor wavelet transform (TQWT) based algorithm was developed for epileptic EEG feature extraction. The extracted features were forwarded to the bagging tree, k-NN, and SVM as classifiers to evaluate the performance of the proposed feature extraction technique. The proposed TQWT method was tested on two different EEG databases. Finally, a new classification system was presented for epileptic seizures detection in EEGs blending frequency domain with information gain (InfoGain) technique. Fast Fourier transform (FFT) or discrete wavelet transform (DWT) were applied individually to analyse EEG recording signals into frequency bands for feature extraction. To select the most important feature, the infoGain technique was employed. A LS_SVM classifier was used to evaluate the performance of this system. The research indicates that the proposed techniques are very practical and effective for classifying epileptic EEG disorders and can assist to present the most important clinical information about patients with brain disorders. |