Constraint-Aware Wind Power Forecasting with an Optimized Hybrid Machine Learning Model

Article


Faruque, Md. Omer, Hossain, Md Alamgir, Alam, S. M. Mahfuz and Khalid, Muhammad. 2025. "Constraint-Aware Wind Power Forecasting with an Optimized Hybrid Machine Learning Model." Energy Conversion and Management. 27. https://doi.org/10.1016/j.ecmx.2025.101026
Article Title

Constraint-Aware Wind Power Forecasting with an Optimized Hybrid Machine Learning Model

Article CategoryArticle
AuthorsFaruque, Md. Omer, Hossain, Md Alamgir, Alam, S. M. Mahfuz and Khalid, Muhammad
Journal TitleEnergy Conversion and Management
Journal Citation27
Article Number101026
Number of Pages15
Year2025
Place of PublicationUnited Kingdom
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ecmx.2025.101026
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S2590174525001588
Abstract

Accurate prediction of wind power generation (WPG) under real-world scenarios is imperative for achieving optimal costing, ensuring reliable operation, and fortifying the security of power systems. While existing research has proposed numerous single, ensemble and hybrid AI model to enhance prediction accuracy, these architecture often overlook operational constraints. In response, this paper introduces a novel constraint aware forecasting framework formed by a convolutional neural network (CNN) integrated with a double layer of gated recurrent unit (GRU) and fully connected layers. A customized loss function enforces ramping and capacity limits through penalty coefficients, which are optimized using a genetic-adaptive-moment-optimizer (GAMO). On top of that, the performance of the proposed scheme was assessed under diverse ramping threshold settings, ranging from the most stringent worst-case scenarios to relaxed operational conditions. Extensive evaluations on WPG dataset reveal that under the most stringent 10% ramping threshold, the proposed model achieves a MAPE of 3.65%, surpassing Bi-LSTM and CNN models by 7.89% in forecasting accuracy. Additionally, the proposed optimization techniques were bench-marked against the Bayesian optimization process (BOP) with a tree prazen sampler and particle swarm optimization (PSO). The proposed GAMO outperformed these methods in computational efficiency, reducing computation time by 74.20% compared to BOP and 90.91% compared to PSO. Furthermore, the results indicate that the GAMO optimization framework facilitated smoother convergence in the model learning process.

KeywordsWind power; Time series; DL; Optimization; CNN-GRU
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020400803. Electrical energy generation (incl. renewables, excl. photovoltaics)
Byline AffiliationsDhaka University of Engineering and Technology, Bangladesh
Griffith University
King Fahd University of Petroleum and Minerals, Saudi Arabia
Permalink -

https://research.usq.edu.au/item/1007qw/constraint-aware-wind-power-forecasting-with-an-optimized-hybrid-machine-learning-model

Download files


Published Version
1-s2.0-S2590174525001588-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 11
    total views
  • 0
    total downloads
  • 11
    views this month
  • 0
    downloads this month

Export as

Related outputs

Vehicle-to-grid technology for load balancing and energy management: A comprehensive review of technical, economic and environmental perspectives
Rehman, Anis Ur, Lu, Junwei, Du, Bo, Bai, Feifei, Sanjari, Mohammad J. and Hossain, Md Alamgir. 2026. "Vehicle-to-grid technology for load balancing and energy management: A comprehensive review of technical, economic and environmental perspectives ." Applied Energy. 402 (Part B). https://doi.org/10.1016/j.apenergy.2025.126974
Enhanced PSO-based optimisation with probabilistic analysis for standalone DC microgrid design
Jayasinghe, Hasith, Gunawardane, Kosala, Hossain, Md. Alamgir, Zamora, Ramon and Preece, Mark Anthony. 2025. "Enhanced PSO-based optimisation with probabilistic analysis for standalone DC microgrid design ." Journal of Energy Storage. 140 (Part B). https://doi.org/10.1016/j.est.2025.118847
Experimental validation of DC-link based voltage control framework for islanded hydrogen DC microgrids
Hossain, Md Alamgir. 2025. "Experimental validation of DC-link based voltage control framework for islanded hydrogen DC microgrids ." International Journal of Hydrogen Energy. 189. https://doi.org/10.1016/j.ijhydene.2025.152033
A Novel Framework for Short-Term Wind Power Prediction with RL-based Hyper-parameter Optimization
Faruque, M. O., Hossain, M. A., Alam, S M Mahfuz, Negnevitsky, M. and Rahman, M.. 2025. "A Novel Framework for Short-Term Wind Power Prediction with RL-based Hyper-parameter Optimization ." IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2025.3628745
Nonlinear Backstepping Controller for Magnetic Linked DC-DC Converter
Shipon, Md. Rezaur Rahman, Islam, Md. Rashidul, Sarker, Md. Shahan, Rahman, Md. Ashib, Hassan, Waqas, Islam, Md. Shazarul and Hossain, Md. Alamgir. 2025. "Nonlinear Backstepping Controller for Magnetic Linked DC-DC Converter." IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2025.3606450
Optimized Model-Free Frequency Control for Renewable Energy Integration in Islanded Power Systems
Hossain, M. A., Gray, E. MacA, Lu, J., Alam, M. S., Hassan, W. and Negnevitsky, M.. 2025. "Optimized Model-Free Frequency Control for Renewable Energy Integration in Islanded Power Systems." IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2025.3603757
Assessment of smart district heating–cooling networks considering renewable and zero-carbon strategies
Ahmed, Ijaz, Habiba, Um-e, Hossain, Md Alamgir and Khalid, Muhammad. 2025. "Assessment of smart district heating–cooling networks considering renewable and zero-carbon strategies." Renewable and Sustainable Energy Reviews. 224. https://doi.org/10.1016/j.rser.2025.116037
Dynamic Control of Isolated Network Microgrids: A Resilient Backpropagation Neural Network-Based Virtual Inertia Control Approach
Shobug, Md Asaduzzaman, Hossain, Md Alamgir, Yang, Fuwen and Lu, Junwei. 2025. "Dynamic Control of Isolated Network Microgrids: A Resilient Backpropagation Neural Network-Based Virtual Inertia Control Approach." IEEE Access. 13, pp. 99939-99956. https://doi.org/10.1109/ACCESS.2025.3576345
Adversarial training-based robust model for transmission line’s insulator defect classification against cyber-attacks
Rahman, Md. Abdur, Islam, Rashidul, Toni, Uttam MTonihapatra, Hossain, Md Alamgi, Hossain, Jahangir and Sheikh, Md. Rafiqul Islam. 2025. "Adversarial training-based robust model for transmission line’s insulator defect classification against cyber-attacks." Electric Power Systems Research. 245. https://doi.org/10.1016/j.epsr.2025.111585
A Bayesian approach to modeling fast chargers functionality for grid frequency support
Mousavizade, Mirsaeed, Garmabdari, Rasoul, Bai, Feifei, Taghizadeh, Foad, Sanjari, Mohammad J., Alahyari, Arman, Hossain, Md. Alamgir, Mahmoudian, Ali and Lu, Junwei. 2025. "A Bayesian approach to modeling fast chargers functionality for grid frequency support." Applied Energy. 384. https://doi.org/10.1016/j.apenergy.2025.125452
Multi-Criteria Decision-Making for Renewable Energy: Methods, Applications, and Challenges
Abdel-Basset, Mohamed, Gamal, Abduallah, Elhoseny, Mohamed and Hossain, Md Alamgir. 2024. Multi-Criteria Decision-Making for Renewable Energy: Methods, Applications, and Challenges. Elsevier.
Very short-term wind power forecasting for real-time operation using hybrid deep learning model with optimization algorithm
Faruque, Md Omer, Hossain, Md Alamgir, Islam, Md Rashidul, Alam, SM Mahfuz and Karmaker, Ashish Kumar. 2024. "Very short-term wind power forecasting for real-time operation using hybrid deep learning model with optimization algorithm." Cleaner Energy Systems. 9. https://doi.org/10.1016/j.cles.2024.100129
Resiliency of forecasting methods in different application areas of smart grids: A review and future prospects
Rahman, M.A., Islam, Md Rashidul, Hossain, Md Alamgir, Rana, M.S., Hossain, Md Jahangir and Gray, Evan MacA.. 2024. "Resiliency of forecasting methods in different application areas of smart grids: A review and future prospects." Engineering Applications of Artificial Intelligence. 135. https://doi.org/10.1016/j.engappai.2024.108785
Capacity and operation optimization of hybrid microgrid for economic zone using a novel meta-heuristic algorithm
Abeg, Arif Istiak, Islam, Md Rashidul, Hossain, Md Alamgir, Ishraque, Md Fatin, Islam, Md Rakibul and Hossain, M.J.. 2024. "Capacity and operation optimization of hybrid microgrid for economic zone using a novel meta-heuristic algorithm." Journal of Energy Storage. 94. https://doi.org/0.1016/j.est.2024.112314
Hybrid PV and battery system sizing for commercial buildings in Malaysia: A case study of FKE-2 building in UTeM
Hossain, Jahangir, Shareef, Hussain, Hossain, Md Alamgir, Kalam, Akhtar and Kadir, Aida Fazliana Abdul. 2024. "Hybrid PV and battery system sizing for commercial buildings in Malaysia: A case study of FKE-2 building in UTeM." IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2024.3353714
Electric vehicle hosting capacity analysis: Challenges and solutions
Karmaker, Ashish Kumar, Prakash, Krishneel, Siddique, Md Nazrul Islam, Hossain, Md Alamgir and Pota, Hemanshu. 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions." Renewable and Sustainable Energy Reviews. 189 (Part A). https://doi.org/10.1016/j.rser.2023.113916
Optimal Power Flow Considering Intermittent Solar and Wind Generation using Multi-Operator Differential Evolution Algorithm
Hossain, M., Sallam, Karam M, Elsayed, Seham S, Chakrabortty, Ripon K and Ryan, Michael J. 2024. "Optimal Power Flow Considering Intermittent Solar and Wind Generation using Multi-Operator Differential Evolution Algorithm." Electric Power Systems Research. 232, p. 110377.
Integrated building information modeling and blockchain system for decentralized progress payments in construction projects
Khalid, Muhammad Asfund, Hassan, Muhammad Usman, Ullah, Fahim and Ahmed, Khursheed. 2024. "Integrated building information modeling and blockchain system for decentralized progress payments in construction projects." Journal of Engineering, Design and Technology. https://doi.org/10.1108/JEDT-04-2024-0252
An Improved Decentralized Scheme for Incentive-Based Demand Response from Residential Customers
Dewangan, Chaman Lal, Vijayan, Vineeth, Shukla, Devesh, Chakrabarti, Saikat, Singh, S.N., Sharma, Ankush and Hossain, Md Alamgir. 2023. "An Improved Decentralized Scheme for Incentive-Based Demand Response from Residential Customers." Energy. 284. https://doi.org/10.1016/j.energy.2023.128568
Optimized forecasting model to improve the accuracy of very short-term wind power prediction
Hossain, Md Alamgir, Gray, Evan, Lu, Junwei, Islam, Md Rabiul, Alam, Md Shafiul, Chakrabortty, Ripon and Pota, Hemanshu Roy. 2023. "Optimized forecasting model to improve the accuracy of very short-term wind power prediction." IEEE Transactions on Industrial Informatics. 19 (10), pp. 10145-10159. https://doi.org/10.1109/TII.2022.3230726
Predicting wind power generation using hybrid deep learning with optimization
Hossain, Md Alamgir, Chakrabortty, Ripon K, ElSawah, Sondoss, Gray, Evan MacA. and Ryan, Michael J.. 2021. "Predicting wind power generation using hybrid deep learning with optimization." IEEE Transactions on Applied Superconductivity. 31 (8). https://doi.org/10.1109/TASC.2021.3091116
Energy scheduling of community microgrid with battery cost using particle swarm optimisation
Hossain, M., Pota, Hemanshu Roy, Squartini, Stefano, Zaman, Forhad and Guerrero, Josep M. 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation." Applied Energy. 254, p. 113723.