Proximal soil sensing. An effective approach for soil measurements in space and time

Article


Viscarra Rossel, R. A., McKenzie, N. J., Adamchuk, V. I., Sudduth, K. A. and Lobsey, C.. 2011. "Proximal soil sensing. An effective approach for soil measurements in space and time." Advances in Agronomy. 113, pp. 237-282. https://doi.org/10.1016/B978-0-12-386473-4.00010-5
Article Title

Proximal soil sensing. An effective approach for soil measurements in space and time

ERA Journal ID5296
Article CategoryArticle
AuthorsViscarra Rossel, R. A. (Author), McKenzie, N. J. (Author), Adamchuk, V. I. (Author), Sudduth, K. A. (Author) and Lobsey, C. (Author)
Journal TitleAdvances in Agronomy
Journal Citation113, pp. 237-282
Number of Pages46
Year2011
Place of PublicationUnited States
ISSN0065-2113
2213-6789
Digital Object Identifier (DOI)https://doi.org/10.1016/B978-0-12-386473-4.00010-5
Web Address (URL)https://www.elsevier.com/books/advances-in-agronomy/sparks/978-0-12-386473-4
Abstract

This chapter reviews proximal soil sensing (PSS). Our intent is for it to be a source of up-to-date information on PSS, the technologies that are currently available and their use for measuring soil properties. We first define PSS and discuss the sampling dilemma. Using the range of frequencies in the electromagnetic spectrum as a framework, we describe technologies that can be used for PSS, including electrochemical and mechanical sensors, telemetry, geographic positioning and elevation, multisensor platforms, and core measuring and down-borehole sensors. Because soil properties can be measured with different proximal soil sensors we provide examples of the alternative techniques that are available for measuring soil properties. We also indicate the developmental stage of technologies for PSS and the current approximate cost of commercial sensors. Our discussion focuses on the development of PSS over the past 30. years and on its current state. Finally, we provide a short list of general considerations for future work and suggest that we need research and development to: (i) improve soil sampling designs for PSS, (ii) define the most suitable technique or combination of techniques for measuring key soil properties, (iii) better understand the interactions between soil and sensor signals, (iv) derive theoretical sensor calibrations, (v) understand the basis for local versus global sensor calibrations, (vi) improve signal processing, analysis and reconstruction techniques, (vii) derive and improve methods for sensor data fusion, and (viii) explore the many and varied soil, agricultural, and environmental applications where proximal soil sensors could be used. PSS provides soil scientists with an effective approach to learn more about soils. Proximal soil sensors allow rapid and inexpensive collection of precise, quantitative, fine-resolution data, which can be used to better understand soil spatial and temporal variability. We hope that this review raises awareness about PSS to further its research and development and to encourage the use of proximal soil sensors in different applications. PSS can help provide sustainable solutions to the global issues that we face: food, water, and energy security and climate change.

KeywordsElectrical conductivity; Electrochemical sensing; Electromagnetic induction; Gamma radiometrics; Geophysics; Mechanical sensors; Mobile soil sensors; Multisensor platform; Proximal soil sensing; Sensor data fusion; Soil analysis; Soil measurement; Soil sampling; Soil spectroscopy;
ANZSRC Field of Research 2020410603. Soil biology
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsCommonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
McGill University, Canada
Department of Agriculture, United States
Department of Employment, Economic Development and Innovation, Queensland
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q41vx/proximal-soil-sensing-an-effective-approach-for-soil-measurements-in-space-and-time

  • 1895
    total views
  • 11
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A cost-effective approach to estimate plant available water capacity
Gajurel, Suman, Lai, Yunru, Lobsey, Craig and Pembleton, Keith G.. 2024. "A cost-effective approach to estimate plant available water capacity." Geoderma. 442. https://doi.org/10.1016/j.geoderma.2024.116794
Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals
Redding, M.R., Witt, T., Lobsey, C.R., Mayer, D.G., Hunter, B., Pratt, S., Robinson, N., Schmidt, S., Laycock, B. and Phillips, I.. 2022. "Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals." Journal of Environmental Management. 304. https://doi.org/10.1016/j.jenvman.2021.114264
Australian rapid-response airborne observation of the Hayabusa2 reentry
Zander, Fabian, Buttsworth, David R., Birch, Byrenn, Noller, Lachlan, Wright, Duncan, James, Christopher M., Thompson, Matthew, Apirana, Steven, Leis, John, Lobsey, Craig and Payne, Allan. 2021. "Australian rapid-response airborne observation of the Hayabusa2 reentry." Journal of Spacecraft and Rockets. 58 (6), pp. 1915-1919. https://doi.org/10.2514/1.A35062
A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction
Roberton S.D., Lobsey, C.R. and Bennett, J.McL.. 2021. "A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction ." Geoderma. 382. https://doi.org/10.1016/j.geoderma.2020.114705
Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach
Roberton, Stirling, Bennett, John McL., Lobsey, Craig R. and Bishop, Thomas F. A.. 2020. "Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach ." Agronomy. 10 (11), pp. 1-18. https://doi.org/10.3390/agronomy10111676
rs-local data-mines information from spectral libraries to improve local calibrations
Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P. and Hedley, C. B.. 2017. "rs-local data-mines information from spectral libraries to improve local calibrations." European Journal of Soil Science. 68 (6), pp. 840-852. https://doi.org/10.1111/ejss.12490
Scoping review of proximal soil sensors for grain growing
Viscarra Rossel, Raphael A. and Lobsey, Craig. 2016. Scoping review of proximal soil sensors for grain growing. Canberra, Australia. CSIRO Publishing. https://doi.org/10.4225/08/5953fcda5ab78
Novel soil profile sensing to monitor organic C stocks and condition
Viscarra Rossel, Raphael A., Lobsey, Craig R., Sharman, Chris, Flick, Paul and McLachlan, Gordon. 2017. "Novel soil profile sensing to monitor organic C stocks and condition." Environmental Science and Technology. 51 (10), pp. 5630-5641. https://doi.org/10.1021/acs.est.7b00889
Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon
Roudier, P., Hedley, C.B., Lobsey, C .R., Viscarra Rossel, R. A. and Leroux, C.. 2017. "Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon." Geoderma. 296, pp. 98-107. https://doi.org/10.1016/j.geoderma.2017.02.014
Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference
Viscarra Rossel, R. A., Brus, D. J., Lobsey, C., Shi, Z. and McLachlan, G.. 2016. "Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference." Geoderma. 265, pp. 152-163. https://doi.org/10.1016/j.geoderma.2015.11.016
Sensing of soil bulk density for more accurate carbon accounting
Lobsey, C. R. and Viscarra Rossel, R. A.. 2016. "Sensing of soil bulk density for more accurate carbon accounting." European Journal of Soil Science. 67 (4), pp. 504-513. https://doi.org/10.1111/ejss.12355
Soil organic carbon dust emission: an omitted global source of atmospheric CO2
Chappell, Adrian, Webb, Nicholas P., Butler, Harry J., Strong, Craig L., McTainsh, Grant H., Leys, John F. and Viscarra Rossel, Raphael A.. 2013. "Soil organic carbon dust emission: an omitted global source of atmospheric CO2." Global Change Biology. 19 (10), pp. 3238-3244. https://doi.org/10.1111/gcb.12305