Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference

Article


Viscarra Rossel, R. A., Brus, D. J., Lobsey, C., Shi, Z. and McLachlan, G.. 2016. "Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference." Geoderma. 265, pp. 152-163. https://doi.org/10.1016/j.geoderma.2015.11.016
Article Title

Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference

ERA Journal ID5257
Article CategoryArticle
AuthorsViscarra Rossel, R. A. (Author), Brus, D. J. (Author), Lobsey, C. (Author), Shi, Z. (Author) and McLachlan, G. (Author)
Journal TitleGeoderma
Journal Citation265, pp. 152-163
Number of Pages12
Year2016
PublisherElsevier
Place of PublicationNetherlands
ISSN0016-7061
1872-6259
Digital Object Identifier (DOI)https://doi.org/10.1016/j.geoderma.2015.11.016
Web Address (URL)http://www.sciencedirect.com/science/article/pii/S0016706115301312#
Abstract

For baselining and to assess changes in soil organic carbon (C) we need efficient soil sampling designs and methods for measuring C stocks. Conventional analytical methods are time-consuming, expensive and impractical, particularly for measuring at depth. Here we demonstrate the use of proximal soil sensors for estimating the total soil organic C stocks and their accuracies in the 0-10 cm, 0-30 cm and 0-100 cm layers, and for mapping the stocks in each of the three depth layers across 2837 ha of grazing land. Sampling locations were selected by probability sampling, which allowed design-based, model-assisted and model-based estimation of the total organic C stock in the study area. We show that spectroscopic and gamma attenuation sensors can produce accurate measures of soil organic C and bulk density at the sampling locations, in this case every 5 cm to a depth of 1 m. Interpolated data from a mobile multisensor platform were used as covariates in Cubist to map soil organic C. The Cubist map was subsequently used as a covariate in the model-assisted and model-based estimation of the total organic C stock. The design-based, model-assisted and model-based estimates of the total organic C stocks in the study area were similar. However, the variances of the model-assisted and model-based estimates were smaller compared to those of the design-based method. The model-based method produced the smallest variances for all three depth layers. Maps helped to assess variability in the C stock of the study area. The contribution of the spectroscopic model prediction error to our uncertainty about the total soil organic C stocks was relatively small. We found that in soil under unimproved pastures, remnant vegetation and forests there is good rationale for measuring soil organic C beyond the commonly recommended depth of 0-30 cm.

KeywordsDesign-based sampling; Infrared spectroscopy; Model-based inference; Proximal soil sensing; Regression estimator; Soil organic carbon stocks; Visible-near; Model-based OPC; Proximal soil sensing; Regression estimators; Soil organic Carbon stocks; Visible-near; ECOLOGICAL AND ENVIRONMENTAL SCIENCES; ECOLOGY OF COMMUNITIES/ECOSYSTEMS; Community/Ecosystem Processes; Nutrient cycling and decomposition; ECOLOGICAL AND ENVIRONMENTAL SCIENCES; TECHNIQUES; Sampling; Surveying; Soils and Soil Mechanics; Organic Compounds; Applied Mathematics; FLUIDEX; Related Topics;
ANZSRC Field of Research 2020410101. Carbon sequestration science
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsCommonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
Wageningen University, Netherlands
Zhejiang University, China
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q429z/baseline-estimates-of-soil-organic-carbon-by-proximal-sensing-comparing-design-based-model-assisted-and-model-based-inference

  • 1316
    total views
  • 8
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

A cost-effective approach to estimate plant available water capacity
Gajurel, Suman, Lai, Yunru, Lobsey, Craig and Pembleton, Keith G.. 2024. "A cost-effective approach to estimate plant available water capacity." Geoderma. 442. https://doi.org/10.1016/j.geoderma.2024.116794
Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals
Redding, M.R., Witt, T., Lobsey, C.R., Mayer, D.G., Hunter, B., Pratt, S., Robinson, N., Schmidt, S., Laycock, B. and Phillips, I.. 2022. "Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals." Journal of Environmental Management. 304. https://doi.org/10.1016/j.jenvman.2021.114264
Australian rapid-response airborne observation of the Hayabusa2 reentry
Zander, Fabian, Buttsworth, David R., Birch, Byrenn, Noller, Lachlan, Wright, Duncan, James, Christopher M., Thompson, Matthew, Apirana, Steven, Leis, John, Lobsey, Craig and Payne, Allan. 2021. "Australian rapid-response airborne observation of the Hayabusa2 reentry." Journal of Spacecraft and Rockets. 58 (6), pp. 1915-1919. https://doi.org/10.2514/1.A35062
A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction
Roberton S.D., Lobsey, C.R. and Bennett, J.McL.. 2021. "A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction ." Geoderma. 382. https://doi.org/10.1016/j.geoderma.2020.114705
Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach
Roberton, Stirling, Bennett, John McL., Lobsey, Craig R. and Bishop, Thomas F. A.. 2020. "Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach ." Agronomy. 10 (11), pp. 1-18. https://doi.org/10.3390/agronomy10111676
rs-local data-mines information from spectral libraries to improve local calibrations
Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P. and Hedley, C. B.. 2017. "rs-local data-mines information from spectral libraries to improve local calibrations." European Journal of Soil Science. 68 (6), pp. 840-852. https://doi.org/10.1111/ejss.12490
Scoping review of proximal soil sensors for grain growing
Viscarra Rossel, Raphael A. and Lobsey, Craig. 2016. Scoping review of proximal soil sensors for grain growing. Canberra, Australia. CSIRO Publishing. https://doi.org/10.4225/08/5953fcda5ab78
Novel soil profile sensing to monitor organic C stocks and condition
Viscarra Rossel, Raphael A., Lobsey, Craig R., Sharman, Chris, Flick, Paul and McLachlan, Gordon. 2017. "Novel soil profile sensing to monitor organic C stocks and condition." Environmental Science and Technology. 51 (10), pp. 5630-5641. https://doi.org/10.1021/acs.est.7b00889
Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon
Roudier, P., Hedley, C.B., Lobsey, C .R., Viscarra Rossel, R. A. and Leroux, C.. 2017. "Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon." Geoderma. 296, pp. 98-107. https://doi.org/10.1016/j.geoderma.2017.02.014
Proximal soil sensing. An effective approach for soil measurements in space and time
Viscarra Rossel, R. A., McKenzie, N. J., Adamchuk, V. I., Sudduth, K. A. and Lobsey, C.. 2011. "Proximal soil sensing. An effective approach for soil measurements in space and time." Advances in Agronomy. 113, pp. 237-282. https://doi.org/10.1016/B978-0-12-386473-4.00010-5
Sensing of soil bulk density for more accurate carbon accounting
Lobsey, C. R. and Viscarra Rossel, R. A.. 2016. "Sensing of soil bulk density for more accurate carbon accounting." European Journal of Soil Science. 67 (4), pp. 504-513. https://doi.org/10.1111/ejss.12355
Soil organic carbon dust emission: an omitted global source of atmospheric CO2
Chappell, Adrian, Webb, Nicholas P., Butler, Harry J., Strong, Craig L., McTainsh, Grant H., Leys, John F. and Viscarra Rossel, Raphael A.. 2013. "Soil organic carbon dust emission: an omitted global source of atmospheric CO2." Global Change Biology. 19 (10), pp. 3238-3244. https://doi.org/10.1111/gcb.12305