Sensing of soil bulk density for more accurate carbon accounting

Article


Lobsey, C. R. and Viscarra Rossel, R. A.. 2016. "Sensing of soil bulk density for more accurate carbon accounting." European Journal of Soil Science. 67 (4), pp. 504-513. https://doi.org/10.1111/ejss.12355
Article Title

Sensing of soil bulk density for more accurate carbon accounting

ERA Journal ID41617
Article CategoryArticle
AuthorsLobsey, C. R. (Author) and Viscarra Rossel, R. A. (Author)
Journal TitleEuropean Journal of Soil Science
Journal Citation67 (4), pp. 504-513
Number of Pages10
Year2016
Place of PublicationUnited Kingdom
ISSN1351-0754
1365-2389
Digital Object Identifier (DOI)https://doi.org/10.1111/ejss.12355
Web Address (URL)http://onlinelibrary.wiley.com/doi/10.1111/ejss.12355/abstract;jsessionid=5E261B41E114A77CDF38C2E9FA8EDF4A.f02t02
Abstract

Measurements of soil bulk density can aid our understanding of soil functions and the effects of land use and climate change on soil organic carbon (C) stocks. Current methods for measuring bulk density are laborious and expensive, subject to errors and complicated by the need to measure below the soil surface. These shortcomings are emphasized when there is need to characterize the spatial (lateral and vertical) and temporal variation of soil bulk density and related properties. We developed a technique that combines gamma-ray attenuation and visible–near infrared (vis–NIR) spectroscopy to measure ex situ the bulk density of 1-m soil cores that are sampled freshly, wet and under field conditions. We found that the accuracy of the sensor measurements was similar to that of the conventional single-ring method, but sensing is rapid, inexpensive, non-destructive and practical. Sensing can be used to measure many soil cores efficiently at fine depth resolutions (e.g. every 2 cm along the core), thereby allowing effective characterization of spatial variation in both lateral and vertical directions. The measurements can be made in the field, on wet soil cores, which reduces the costs and errors associated with transport, handling, oven-drying and laboratory measurements. We show that sensing of bulk density can be used to measure organic C stocks on either a fixed-depth (FD) or cumulative soil mass (CSM) basis. Our sensing approach to measure bulk density meets all the requirements for inclusion in a well-designed soil organic C accounting system; it provides accurate and verifiable data on the spatial variation of soil bulk density so that changes in C stocks might be attributed more accurately to changes in either bulk density or in C content. Highlights: Proximal soil sensors enable practical, accurate, verifiable and inexpensive measurements of bulk density for C accounting. We describe a new sensing approach for measuring soil bulk density. Measurements are rapid, accurate, verifiable and can be made on wet soil under field conditions and to depth. Sensing enables measurements of C stocks using both fixed-depth or cumulative soil mass.

ANZSRC Field of Research 2020410101. Carbon sequestration science
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsCommonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q429y/sensing-of-soil-bulk-density-for-more-accurate-carbon-accounting

  • 1404
    total views
  • 9
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals
Redding, M.R., Witt, T., Lobsey, C.R., Mayer, D.G., Hunter, B., Pratt, S., Robinson, N., Schmidt, S., Laycock, B. and Phillips, I.. 2022. "Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals." Journal of Environmental Management. 304. https://doi.org/10.1016/j.jenvman.2021.114264
Australian rapid-response airborne observation of the Hayabusa2 reentry
Zander, Fabian, Buttsworth, David R., Birch, Byrenn, Noller, Lachlan, Wright, Duncan, James, Christopher M., Thompson, Matthew, Apirana, Steven, Leis, John, Lobsey, Craig and Payne, Allan. 2021. "Australian rapid-response airborne observation of the Hayabusa2 reentry." Journal of Spacecraft and Rockets. 58 (6), pp. 1915-1919. https://doi.org/10.2514/1.A35062
A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction
Roberton S.D., Lobsey, C.R. and Bennett, J.McL.. 2021. "A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction ." Geoderma. 382. https://doi.org/10.1016/j.geoderma.2020.114705
Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach
Roberton, Stirling, Bennett, John McL., Lobsey, Craig R. and Bishop, Thomas F. A.. 2020. "Assessing the Sensitivity of Site-Specific Lime and Gypsum Recommendations to Soil Sampling Techniques and Spatial Density of Data Collection in Australian Agriculture: A Pedometric Approach ." Agronomy. 10 (11), pp. 1-18. https://doi.org/10.3390/agronomy10111676
rs-local data-mines information from spectral libraries to improve local calibrations
Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P. and Hedley, C. B.. 2017. "rs-local data-mines information from spectral libraries to improve local calibrations." European Journal of Soil Science. 68 (6), pp. 840-852. https://doi.org/10.1111/ejss.12490
Scoping review of proximal soil sensors for grain growing
Viscarra Rossel, Raphael A. and Lobsey, Craig. 2016. Scoping review of proximal soil sensors for grain growing. Canberra, Australia. CSIRO Publishing. https://doi.org/10.4225/08/5953fcda5ab78
Novel soil profile sensing to monitor organic C stocks and condition
Viscarra Rossel, Raphael A., Lobsey, Craig R., Sharman, Chris, Flick, Paul and McLachlan, Gordon. 2017. "Novel soil profile sensing to monitor organic C stocks and condition." Environmental Science and Technology. 51 (10), pp. 5630-5641. https://doi.org/10.1021/acs.est.7b00889
Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon
Roudier, P., Hedley, C.B., Lobsey, C .R., Viscarra Rossel, R. A. and Leroux, C.. 2017. "Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon." Geoderma. 296, pp. 98-107. https://doi.org/10.1016/j.geoderma.2017.02.014
Proximal soil sensing. An effective approach for soil measurements in space and time
Viscarra Rossel, R. A., McKenzie, N. J., Adamchuk, V. I., Sudduth, K. A. and Lobsey, C.. 2011. "Proximal soil sensing. An effective approach for soil measurements in space and time." Advances in Agronomy. 113, pp. 237-282. https://doi.org/10.1016/B978-0-12-386473-4.00010-5
Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference
Viscarra Rossel, R. A., Brus, D. J., Lobsey, C., Shi, Z. and McLachlan, G.. 2016. "Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference." Geoderma. 265, pp. 152-163. https://doi.org/10.1016/j.geoderma.2015.11.016
Soil organic carbon dust emission: an omitted global source of atmospheric CO2
Chappell, Adrian, Webb, Nicholas P., Butler, Harry J., Strong, Craig L., McTainsh, Grant H., Leys, John F. and Viscarra Rossel, Raphael A.. 2013. "Soil organic carbon dust emission: an omitted global source of atmospheric CO2." Global Change Biology. 19 (10), pp. 3238-3244. https://doi.org/10.1111/gcb.12305