Genomic and functional characterization of coleopteran insectspecific α-amylase inhibitor gene from Amaranthus species

Article


Bhide, A., Channale, Sonal M., Yadav, Yashpal, Bhattacharjee, Kabita, Pawar, Pankaj K., Maheshwari, V. L., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.. 2017. "Genomic and functional characterization of coleopteran insectspecific α-amylase inhibitor gene from Amaranthus species." Plant Molecular Biology. 94 (3), pp. 319-332. https://doi.org/10.1007/s11103-017-0609-5
Article Title

Genomic and functional characterization of coleopteran insectspecific α-amylase inhibitor gene from Amaranthus species

Article CategoryArticle
AuthorsBhide, A., Channale, Sonal M., Yadav, Yashpal, Bhattacharjee, Kabita, Pawar, Pankaj K., Maheshwari, V. L., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.
Journal TitlePlant Molecular Biology
Journal Citation94 (3), pp. 319-332
Number of Pages14
Year2017
Place of PublicationNetherlands
Digital Object Identifier (DOI)https://doi.org/10.1007/s11103-017-0609-5
Web Address (URL)https://link.springer.com/article/10.1007/s11103-017-0609-5
Abstract

The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3′UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.

KeywordsAmaranthus hypochondriacus; Callosobruchus chinensis; Signal peptide; Tribolium castaneum; α-Amylase; α-Amylase inhibitor
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

PubMed ID28405784
FunderDepartment of Science and Technology, Ministry of Science and Technology, India
Byline AffiliationsCSIR-National Chemical Laboratory, India
Shivaji University, India
North Maharashtra University, India
Library Services
Permalink -

https://research.usq.edu.au/item/w72qz/genomic-and-functional-characterization-of-coleopteran-insectspecific-amylase-inhibitor-gene-from-amaranthus-species

  • 31
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance
Channale, Sonal, Thompson, John P., Varshney, Rajeev K., Thudi, Mahendar and Zwart, Rebecca S.. 2023. "Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance." Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1139574
Two decades of association mapping: Insights on disease resistance in major crops
Gangurde, Sunil S., Xavier, Alencar, Naik, Yogesh Dashrath, Jha, Uday Chand, Rangari, Sagar Krushnaji, Kumar, Raj, Reddy, M. S. Sai, Channale, Sonal, Elango, Dinakaran, Mir, Reyazul Rouf, Zwart, Rebecca, Laxuman, C., Sudini, Hari Kishan, Pandey, Manish K., Punnuri, Somashekhar, Mendu, Venugopal, Reddy, Umesh K., Guo, Baozhu, Gangarao, N. V. P. R., ..., Thudi, Mahendar. 2022. "Two decades of association mapping: Insights on disease resistance in major crops." Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.1064059
Publisher Correction: Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea
Channale Sonal, Kalavikatte, Danamma, Thompson J.P., Kudapa, Himabindu, Bajaj, Prasad, Varshney, Rajeev K., Zwart, Rebecca S. and Thudi, Mahendar. 2022. "Publisher Correction: Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea ." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-08495-4
Transcriptome analysis reveals key genes associated with root‑lesion nematode Pratylenchus thornei resistance in chickpea
Channale, Sonal, Kalavikatte, Danamma, Thompson, John P., Kudapa, Himabindu, Bajaj, Prasad, Varshney, Rajeev K., Zwart, Rebecca S. and Thudi, Manhendar. 2021. "Transcriptome analysis reveals key genes associated with root‑lesion nematode Pratylenchus thornei resistance in chickpea." Scientific Reports. 11 (1), pp. 1-11. https://doi.org/10.1038/s41598-021-96906-3
Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives
Zwart, Rebecca S., Thudi, Mahendar, Channale, Sonal, Manchikatla, Praveen K., Varshney, Rajeev K. and Thompson, John P.. 2019. "Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives." Frontiers in Plant Science. 10, pp. 1-14. https://doi.org/10.3389/fpls.2019.00966
Microsatellite mapping identifies TTKST-effective stem rust resistance gene in wheat cultivars VL404 and Janz
Bansal, Urmil K., Zwart, Rebecca, Bhavani, Sridhar, Wanyera, Ruth, Gupta, Vidya and Bariana, Harbans S.. 2012. "Microsatellite mapping identifies TTKST-effective stem rust resistance gene in wheat cultivars VL404 and Janz." Molecular Breeding: new strategies in plant improvement. 30 (4), pp. 1757-1765. https://doi.org/10.1007/s11032-012-9759-y
Characterization of two coleopteran a-amylases and molecular insights into their differential inhibition by synthetic a-amylase inhibitor, acarbose
Channale, Sonal M., Bhide, Amey J., Yadav, Yashpal, Kashyap, Garima, Pawar, Pankaj K., Maheshwari, V. L., Ramasamy, Sureshkumar and Giri, Ashok P.. 2016. "Characterization of two coleopteran a-amylases and molecular insights into their differential inhibition by synthetic a-amylase inhibitor, acarbose." Insect Biochemistry and Molecular Biology. 74, pp. 1-11. https://doi.org/10.1016/j.ibmb.2016.04.009
Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera
Bhide, Amey J., Channale, Sonal M., Patil, Sucheta S., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.. 2015. "Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera." Biochimica et Biophysica Acta (BBA): General Subjects. 1850 (9), pp. 1719-1728. https://doi.org/10.1016/j.bbagen.2015.04.008