Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera

Article


Bhide, Amey J., Channale, Sonal M., Patil, Sucheta S., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.. 2015. "Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera." Biochimica et Biophysica Acta (BBA): General Subjects. 1850 (9), pp. 1719-1728. https://doi.org/10.1016/j.bbagen.2015.04.008
Article Title

Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera

ERA Journal ID36838
Article CategoryArticle
AuthorsBhide, Amey J., Channale, Sonal M., Patil, Sucheta S., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.
Journal TitleBiochimica et Biophysica Acta (BBA): General Subjects
Journal Citation1850 (9), pp. 1719-1728
Number of Pages10
Year2015
Place of PublicationNetherlands
ISSN0304-4165
1872-8006
Digital Object Identifier (DOI)https://doi.org/10.1016/j.bbagen.2015.04.008
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0304416515001130
Abstract

Background: Helicoverpa armigera (Lepidoptera) feeds on various plants using diverse digestive enzymes as one of the survival tool-kit. The aim of the present study was to understand biochemical properties of recombinant α-amylases of H. armigera viz., HaAmy1 and HaAmy2.

Methods: The open reading frames of HaAmy1 and HaAmy2 were cloned in Pichia pastoris and expressed heterologously. Purified recombinant enzymes were characterized for their biochemical and biophysical attributes using established methods.

Results: Sequence alignment and homology modeling showed that HaAmy1 and HaAmy2 were conserved in their amino acid sequences and structures. HaAmy1 and HaAmy2 showed optimum activity at 60°C; however, they differed in their optimum pH. Furthermore, HaAmy2 showed higher affinity for starch and amylopectin whereas HaAmy1 had higher catalytic efficiency. HaAmy1 and HaAmy2 were inhibited to the same magnitude by a synthetic amylase inhibitor (acarbose) while wheat amylase inhibitor showed about 2-fold higher inhibition of HaAmy1 than HaAmy2 at pH 7 while 6-fold difference at pH 11. Interactions of HaAmy1 and HaAmy2 with wheat amylase inhibitor revealed 2:1 stoichiometric ratio and much more complex interaction with HaAmy1.

Conclusions: The diversity of amylases in perspective of their biochemical and biophysical properties, and their differential interactions with amylase inhibitors signify the potential role of these enzymes in adaptation of H. armigera on diverse plant diets. General significance Characterization of digestive enzymes of H. armigera provides the molecular basis for the polyphagous nature and thus could assist in designing future strategies for the insect control.

KeywordsAmylase inhibitors; Digestive enzymes; Enzyme activity; Helicoverpa armigera; α-amylases
Contains Sensitive ContentDoes not contain sensitive content
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

FunderCouncil of Scientific and Industrial Research, India
Byline AffiliationsCSIR-National Chemical Laboratory, India
Permalink -

https://research.usq.edu.au/item/w72w7/biochemical-structural-and-functional-diversity-between-two-digestive-amylases-from-helicoverpa-armigera

  • 28
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance
Channale, Sonal, Thompson, John P., Varshney, Rajeev K., Thudi, Mahendar and Zwart, Rebecca S.. 2023. "Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance." Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1139574
Two decades of association mapping: Insights on disease resistance in major crops
Gangurde, Sunil S., Xavier, Alencar, Naik, Yogesh Dashrath, Jha, Uday Chand, Rangari, Sagar Krushnaji, Kumar, Raj, Reddy, M. S. Sai, Channale, Sonal, Elango, Dinakaran, Mir, Reyazul Rouf, Zwart, Rebecca, Laxuman, C., Sudini, Hari Kishan, Pandey, Manish K., Punnuri, Somashekhar, Mendu, Venugopal, Reddy, Umesh K., Guo, Baozhu, Gangarao, N. V. P. R., ..., Thudi, Mahendar. 2022. "Two decades of association mapping: Insights on disease resistance in major crops." Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.1064059
Publisher Correction: Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea
Channale Sonal, Kalavikatte, Danamma, Thompson J.P., Kudapa, Himabindu, Bajaj, Prasad, Varshney, Rajeev K., Zwart, Rebecca S. and Thudi, Mahendar. 2022. "Publisher Correction: Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea ." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-08495-4
Transcriptome analysis reveals key genes associated with root‑lesion nematode Pratylenchus thornei resistance in chickpea
Channale, Sonal, Kalavikatte, Danamma, Thompson, John P., Kudapa, Himabindu, Bajaj, Prasad, Varshney, Rajeev K., Zwart, Rebecca S. and Thudi, Manhendar. 2021. "Transcriptome analysis reveals key genes associated with root‑lesion nematode Pratylenchus thornei resistance in chickpea." Scientific Reports. 11 (1), pp. 1-11. https://doi.org/10.1038/s41598-021-96906-3
Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives
Zwart, Rebecca S., Thudi, Mahendar, Channale, Sonal, Manchikatla, Praveen K., Varshney, Rajeev K. and Thompson, John P.. 2019. "Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives." Frontiers in Plant Science. 10, pp. 1-14. https://doi.org/10.3389/fpls.2019.00966
Microsatellite mapping identifies TTKST-effective stem rust resistance gene in wheat cultivars VL404 and Janz
Bansal, Urmil K., Zwart, Rebecca, Bhavani, Sridhar, Wanyera, Ruth, Gupta, Vidya and Bariana, Harbans S.. 2012. "Microsatellite mapping identifies TTKST-effective stem rust resistance gene in wheat cultivars VL404 and Janz." Molecular Breeding: new strategies in plant improvement. 30 (4), pp. 1757-1765. https://doi.org/10.1007/s11032-012-9759-y
Genomic and functional characterization of coleopteran insectspecific α-amylase inhibitor gene from Amaranthus species
Bhide, A., Channale, Sonal M., Yadav, Yashpal, Bhattacharjee, Kabita, Pawar, Pankaj K., Maheshwari, V. L., Gupta, Vidya S., Ramasamy, Sureshkumar and Giri, Ashok P.. 2017. "Genomic and functional characterization of coleopteran insectspecific α-amylase inhibitor gene from Amaranthus species." Plant Molecular Biology. 94 (3), pp. 319-332. https://doi.org/10.1007/s11103-017-0609-5
Characterization of two coleopteran a-amylases and molecular insights into their differential inhibition by synthetic a-amylase inhibitor, acarbose
Channale, Sonal M., Bhide, Amey J., Yadav, Yashpal, Kashyap, Garima, Pawar, Pankaj K., Maheshwari, V. L., Ramasamy, Sureshkumar and Giri, Ashok P.. 2016. "Characterization of two coleopteran a-amylases and molecular insights into their differential inhibition by synthetic a-amylase inhibitor, acarbose." Insect Biochemistry and Molecular Biology. 74, pp. 1-11. https://doi.org/10.1016/j.ibmb.2016.04.009