A Dielectric Elastomer-Based Multimodal Capacitive Sensor

Article


Zhu, Yuting, Giffney, Tim and Aw, Kean. 2022. "A Dielectric Elastomer-Based Multimodal Capacitive Sensor ." Sensors. 22 (2). https://doi.org/10.3390/s22020622
Article Title

A Dielectric Elastomer-Based Multimodal Capacitive Sensor

ERA Journal ID34304
Article CategoryArticle
AuthorsZhu, Yuting, Giffney, Tim and Aw, Kean
Journal TitleSensors
Journal Citation22 (2)
Article Number622
Number of Pages12
Year2022
PublisherMDPI AG
Place of PublicationSwitzerland
ISSN1424-8220
1424-8239
Digital Object Identifier (DOI)https://doi.org/10.3390/s22020622
Web Address (URL)https://www.mdpi.com/1424-8220/22/2/622
Abstract

Dielectric elastomer (DE) sensors have been widely used in a wide variety of applications, such as in robotic hands, wearable sensors, rehabilitation devices, etc. A unique dielectric elastomer-based multimodal capacitive sensor has been developed to quantify the pressure and the location of any touch simultaneously. This multimodal sensor is a soft, flexible, and stretchable dielectric elastomer (DE) capacitive pressure mat that is composed of a multi-layer soft and stretchy DE sensor. The top layer measures the applied pressure, while the underlying sensor array enables location identification. The sensor is placed on a passive elastomeric substrate in order to increase deformation and optimize the sensor’s sensitivity. This DE multimodal capacitive sensor, with pressure and localization capability, paves the way for further development with potential applications in bio-mechatronics technology and other humanoid devices. The sensor design could be useful for robotic and other applications, such as fruit picking or as a bio-instrument for the diabetic insole.

Keywordsdielectric elastomer; flexible pressure sensor; stretchable sensor; multi-location
ANZSRC Field of Research 2020400305. Biomedical instrumentation
Byline AffiliationsUniversity of Auckland, New Zealand
University of Canterbury, New Zealand
Permalink -

https://research.usq.edu.au/item/xv8v3/a-dielectric-elastomer-based-multimodal-capacitive-sensor

Download files


Published Version
sensors-22-00622-v2.pdf
License: CC BY 4.0
File access level: Anyone

  • 68
    total views
  • 24
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

A Review of Flexible Strain Sensors for Walking Gait Monitoring
Shi, Lei, Feng, Junping, Zhu, Yuting, Huang, Fei and Aw, Kean. 2024. "A Review of Flexible Strain Sensors for Walking Gait Monitoring." Sensors and Actuators A: Physical. 377. https://doi.org/10.1016/j.sna.2024.115730
Effect of Fluorine and Copper Ions on Liquid‐Solid Triboelectric Nanogenerator
Salman, Mohamed, Sorokin, Vladislav, Zhu, Zifan, Zhu, Yuting, Gan, Wee Chen and Aw, Kean. 2024. "Effect of Fluorine and Copper Ions on Liquid‐Solid Triboelectric Nanogenerator." Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202400159
Preptin Deficiency Does Not Protect against High-Fat Diet-Induced Metabolic Dysfunction or Bone Loss in Mice
Buckels, Emma J., Tan, Joey, Hsu, Huai-Ling, Zhu, YYuting, Buchanan, Christina M., Matthews, Brya G. and Lee, Kate L.. 2023. "Preptin Deficiency Does Not Protect against High-Fat Diet-Induced Metabolic Dysfunction or Bone Loss in Mice ." JBMR Plus. 7 (8). https://doi.org/10.1002/jbm4.10777
Dielectric Elastomer-based Multi-location Capacitive Sensor
Zhu, Yuting. 2021. Dielectric Elastomer-based Multi-location Capacitive Sensor. PhD Thesis Doctor of Philosophy. University of Auckland.
Using a flexible substrate to enhance the sensitivity of Dielectric Elastomer force sensors
Zhu, Yuting and Tairych, Andreas. 2021. "Using a flexible substrate to enhance the sensitivity of Dielectric Elastomer force sensors." Sensors and Actuators A: Physical. 332 (Part 2). https://doi.org/10.1016/j.sna.2021.113167
Measuring pressure and multi-location with dielectric elastomer capacitive sensors (Conference Presentation)
Zhu, Yuting, Anderson, Iain and Rosset, Samuel. 2020. "Measuring pressure and multi-location with dielectric elastomer capacitive sensors (Conference Presentation)." SPIE Smart Structures + Nondestructive Evaluation 2019. Colorado, United States 04 - 07 Mar 2019 Electroactive Polymer Actuators and Devices (EAPAD) XXII. SPIE. https://doi.org/10.1117/12.2557308
An approach to validate the design and fabrication of dielectric elastomer tactile sensor
Zhu, Yuting, Tairych, Andreas, Rosset, Samuel and Anderson, Iain A.. 2019. "An approach to validate the design and fabrication of dielectric elastomer tactile sensor." SPIE Smart Structures + Nondestructive Evaluation 2019. Colorado, United States 04 - 07 Mar 2019 United States. SPIE. https://doi.org/10.1117/12.2515283
Multi-touch capacitive sensor with new sensor arrangement
Zhu, Yuting, Rosset, Samuel and Anderson, Iain A.. 2018. "Multi-touch capacitive sensor with new sensor arrangement." SPIE Smart Structures and Materials and Non-destructive Evaluation and Health Monitoring 2018. Colorado, United States 05 - 08 Mar 2018 Colorado, United States. SPIE. https://doi.org/10.1117/12.2296794
Wireless sensor technology for collecting surface electromyography signals
Zhu, Yuting. 2013. Wireless sensor technology for collecting surface electromyography signals. Masters Thesis Master of Philosophy. Auckland University of Technology.
Wireless Data Collection of Surface Electromyography Signals
Zhu, Yuting and Kilby, Jeff. 2011. "Wireless Data Collection of Surface Electromyography Signals." 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2011). Wuhan, China 23 - 25 Sep 2011 China. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/wicom.2011.6040369