A Critical Analysis of ECG-Based Key Distribution for Securing Wearable and Implantable Medical Devices

Article


Zheng, Guanglou, Shankaran, Rajan, Yang Wencheng, Valli, Craig, Qiao, Li, Orgun, Mehmet A. and Mukhopadhyay, Subhas Chandra. 2019. "A Critical Analysis of ECG-Based Key Distribution for Securing Wearable and Implantable Medical Devices." IEEE Sensors Journal. 19 (3), pp. 1186-1198. https://doi.org/10.1109/JSEN.2018.2879929
Article Title

A Critical Analysis of ECG-Based Key Distribution for Securing Wearable and Implantable Medical Devices

ERA Journal ID4437
Article CategoryArticle
AuthorsZheng, Guanglou, Shankaran, Rajan, Yang Wencheng, Valli, Craig, Qiao, Li, Orgun, Mehmet A. and Mukhopadhyay, Subhas Chandra
Journal TitleIEEE Sensors Journal
Journal Citation19 (3), pp. 1186-1198
Article Number8529277
Number of Pages13
Year2019
PublisherIEEE (Institute of Electrical and Electronics Engineers)
Place of PublicationUnited States
ISSN1530-437X
1558-1748
Digital Object Identifier (DOI)https://doi.org/10.1109/JSEN.2018.2879929
Web Address (URL)https://ieeexplore.ieee.org/document/8529277
Abstract

Wearable and implantable medical devices (WIMDs) perform critical health monitoring and therapeutic functions. However, current WIMD products lack security safeguards to protect patients from fatal cyber attacks. In the recent past, electrocardiogram (ECG) signals-based security techniques have been widely explored to secure such devices by using two cryptographic primitives, the fuzzy commitment and the fuzzy vault, respectively. Nonetheless, differences, as well as similarities between these two primitives, have not been well investigated, making it difficult to decide which one would be appropriate for a particular setting. In this paper, we perform a critical analysis on both primitives and discuss their merits and drawbacks in the context of the ECG-based key distribution. We analyze the critical challenges within each primitive-based key distribution technique, such as binary sequence generation and polynomial computations. Experimental results show that the technique based on the fuzzy commitment has a better false acceptance rate due to the randomness of ECG binary sequences. On the other hand, the fuzzy vault based scheme can achieve an acceptable false reject rate (5%) with less cost to the WIMDs. Future research is suggested to enhance the precision of ECG signal processing, to improve the efficacy of binary sequence generation process as well as to suggest ways to reduce polynomial computations.

Keywordsbody sensor networks; electrocardiography (ECG); fuzzy commitment; fuzzy vault; implantable medical device (IMD); key distribution; Network security; wireless security
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020460403. Data security and protection
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsEdith Cowan University
Macquarie University
University of New South Wales
Permalink -

https://research.usq.edu.au/item/yy286/a-critical-analysis-of-ecg-based-key-distribution-for-securing-wearable-and-implantable-medical-devices

  • 27
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Advancing face detection efficiency: Utilizing classification networks for lowering false positive incidences
Zhang, Jianlin, Hou, Chen, Yang, Xu, Yang, Xuechao, Yang, Wencheng and Cui, Hui. 2024. "Advancing face detection efficiency: Utilizing classification networks for lowering false positive incidences." Array. 22. https://doi.org/10.1016/j.array.2024.100347
Lightweight federated learning for STIs/HIV prediction
Nguyen, Thi Phuoc Van, Yang, Wencheng, Tang, Zhaohui, Xia, Xiaoyu, Mullens, Amy B., Dean, Judith A. and Li, Yan. 2024. "Lightweight federated learning for STIs/HIV prediction." Scientific Reports. 14 (1). https://doi.org/10.1038/s41598-024-56115-0
UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning
Jiang, Shui, Ge, Yanning, Yang, Xu, Yang, Wencheng and Cui, Hui. 2024. "UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning." Future Internet. 16 (3). https://doi.org/10.3390/fi16030105
Evaluating Cryptocurrency Market Risk on the Blockchain: An Empirical Study Using the ARMA-GARCH-VaR Model
Huang, Yongrong, Wang, Huiqing, Chen, Zhide, Feng, Chen, Zhu, Kexin, Yang, Xu and Yang, Wencheng. 2024. "Evaluating Cryptocurrency Market Risk on the Blockchain: An Empirical Study Using the ARMA-GARCH-VaR Model." IEEE Open Journal of the Computer Society. 5, pp. 83-94. https://doi.org/10.1109/OJCS.2024.3370603
Feature extraction and learning approaches for cancellable biometrics: A survey
Yang, Wencheng, Wang, Song, Hu, Jiankun, Tao, Xiaohui and Li, Yan. 2024. "Feature extraction and learning approaches for cancellable biometrics: A survey." CAAI Transactions on Intelligence Technology. 9 (1), pp. 4-25. https://doi.org/10.1049/cit2.12283
An Adaptive Feature Fusion Network for Alzheimer’s Disease Prediction
Wei, Shicheng, Li, Yan and Yang, Wencheng. 2023. "An Adaptive Feature Fusion Network for Alzheimer’s Disease Prediction." 12th International Conference on Health Information Science (HIS 2023). Melbourne, Australia 23 - 24 Oct 2023 Germany. https://doi.org/10.1007/978-981-99-7108-4
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
Yang, Wencheng, Wang, Song, Cui, Hui, Tang, Zhaohui and Li, Yan. 2023. "A Review of Homomorphic Encryption for Privacy-Preserving Biometrics." Sensors. 23 (7). https://doi.org/10.3390/s23073566
Hybrid KD-NFT: A multi-layered NFT assisted robust Knowledge Distillation framework for Internet of Things
Wang, Nai, Chen, Junjun, Wu, Di, Yang, Wencheng, Xiang, Yong and Sajjanhar, Atul. 2023. "Hybrid KD-NFT: A multi-layered NFT assisted robust Knowledge Distillation framework for Internet of Things." Journal of Information Security and Applications. 75. https://doi.org/10.1016/j.jisa.2023.103483
A review of multi-factor authentication in the Internet of Healthcare Things
Suleski, Tance, Ahmed, Mohiuddin, Yang, Wencheng and Wang, Eugene. 2023. "A review of multi-factor authentication in the Internet of Healthcare Things." Digital Health. 9, pp. 1-20. https://doi.org/10.1177/20552076231177144
Token-Based Biometric Enhanced Key Derivation for Authentication Over Wireless Networks
Cui, Hui, Yang, Xuechao, Yang, Wencheng, Qin, Baodong and Yi, Xun. 2023. "Token-Based Biometric Enhanced Key Derivation for Authentication Over Wireless Networks." IEEE Transactions on Network Science and Engineering. 10 (4), pp. 2347-2357. https://doi.org/10.1109/TNSE.2023.3246439
A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks
Bedari, Aseel, Wang, Song and Yang, Wencheng. 2022. "A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks." Sensors. 22 (19), pp. 1-16. https://doi.org/10.3390/s22197609
Multimedia security and privacy protection in the internet of things: research developments and challenges
Yang, Wencheng, Wang, Song, Hu, Jiankun and Karie, Nickson M.. 2022. "Multimedia security and privacy protection in the internet of things: research developments and challenges." International Journal of Multimedia Intelligence and Security. 4 (1), pp. 20-46. https://doi.org/10.1504/ijmis.2022.121282
A linear convolution-based cancelable fingerprint biometric authentication system
Yang, Wencheng, Wang, Song, Kang, James Jin, Johnstone, Michael N. and Bedari, Aseel. 2022. "A linear convolution-based cancelable fingerprint biometric authentication system." Computers and Security. 114, pp. 1-14. https://doi.org/10.1016/j.cose.2021.102583
A Review on Security Issues and Solutions of the Internet of Drones
Yang, Wencheng, Wang, Song, Yin, Xuefei, Wang, Xu and Hu, Jiankun. 2022. "A Review on Security Issues and Solutions of the Internet of Drones." IEEE Open Journal of the Computer Society. 3, pp. 96-110. https://doi.org/10.1109/OJCS.2022.3183003
Network Forensics in the Era of Artificial Intelligence
Yang, Wencheng, Johnstone, Michael N., Wang, Song, Karie, Nickson M., Bin Sahri, Nor Masri and Kang, James Jin. 2022. "Network Forensics in the Era of Artificial Intelligence." Ahmed, Mohiuddin, Islam, Sheikh Rabiul, Anwar, Adnan, Moustafa, Nour and Pathan, Al-Sakib Khan (ed.) Explainable Artificial Intelligence for Cyber Security: Next Generation Artificial Intelligence. Cham, Switzerland. Springer. pp. 171-190
Leveraging Artificial Intelligence Capabilities for Real-Time Monitoring of Cybersecurity Threats
Karie, Nickson M., Bin Sahri, Nor Masri Bin, Yang, Wencheng and Johnstone, Michael N.. 2022. "Leveraging Artificial Intelligence Capabilities for Real-Time Monitoring of Cybersecurity Threats." Ahmed, Mohiuddin, Islam, Sheikh Rabiul, Anwar, Adnan, Moustafa, Nour and Pathan, Al-Sakib Khan (ed.) Explainable Artificial Intelligence for Cyber Security: Next Generation Artificial Intelligence. Cham, Switzerland. Springer. pp. 141-169
Biometrics for internet‐of‐things security: A review
Yang, Wencheng, Wang, Song, Sahri, Nor Masri, Karie, Nickson M., Ahmed, Mohiuddin and Valli, Craig. 2021. "Biometrics for internet‐of‐things security: A review." Sensors. 21 (18). https://doi.org/10.3390/s21186163
Security and Forensics in the Internet of Things: Research Advances and Challenges
Yang, Wencheng, Johnstone, Michael N., Sikos, Leslie F. and Wang, Song. 2020. "Security and Forensics in the Internet of Things: Research Advances and Challenges." 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT). Sydney, Australia 21 - 21 Apr 2020 Australia. IEEE (Institute of Electrical and Electronics Engineers). pp. 12-17 https://doi.org/10.1109/ETSecIoT50046.2020.00007