Advancing face detection efficiency: Utilizing classification networks for lowering false positive incidences

Article


Zhang, Jianlin, Hou, Chen, Yang, Xu, Yang, Xuechao, Yang, Wencheng and Cui, Hui. 2024. "Advancing face detection efficiency: Utilizing classification networks for lowering false positive incidences." Array. 22. https://doi.org/10.1016/j.array.2024.100347
Article Title

Advancing face detection efficiency: Utilizing classification networks for lowering false positive incidences

Article CategoryArticle
AuthorsZhang, Jianlin, Hou, Chen, Yang, Xu, Yang, Xuechao, Yang, Wencheng and Cui, Hui
Journal TitleArray
Journal Citation22
Article Number100347
Number of Pages8
Year2024
PublisherElsevier
ISSN2590-0056
Digital Object Identifier (DOI)https://doi.org/10.1016/j.array.2024.100347
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S2590005624000134
AbstractThe advancement of convolutional neural networks (CNNs) has markedly progressed in the field of face detection, significantly enhancing accuracy and recall metrics. Precision and recall remain pivotal for evaluating CNN-based detection models; however, there is a prevalent inclination to focus on improving true positive rates at the expense of addressing false positives. A critical issue contributing to this discrepancy is the lack of pseudo-face images within training and evaluation datasets. This deficiency impairs the regression capabilities of detection models, leading to numerous erroneous detections and inadequate localization. To address this gap, we introduce the WIDERFACE dataset, enriched with a considerable number of pseudo-face images created by amalgamating human and animal facial features. This dataset aims to bolster the detection of false positives during training phases. Furthermore, we propose a new face detection architecture that incorporates a classification model into the conventional face detection model to diminish the false positive rate and augment detection precision. Our comparative analysis on the WIDERFACE and other renowned datasets reveals that our architecture secures a lower false positive rate while preserving the true positive rate in comparison to existing top-tier face detection models.
KeywordsConvolutional Neural Network (CNNs); Face detection; Pseudo-face image; False positive rate; Object detection
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020460402. Data and information privacy
Byline AffiliationsFujian Normal University, China
Minjiang University, China
Victoria University
School of Mathematics, Physics and Computing
Monash University
Permalink -

https://research.usq.edu.au/item/z85x7/advancing-face-detection-efficiency-utilizing-classification-networks-for-lowering-false-positive-incidences

Download files


Published Version
1-s2.0-S2590005624000134-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 39
    total views
  • 15
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

High Security and Privacy Protection Model for STI/HIV Risk Prediction
Tang, Zhaohui, Nguyen, Thi Phuoc Van, Yang, Wencheng, Xia, Xiaoyu, Chen, Huaming, Mullens, Amy B., Dean, Judith A., Osborne, Sonya and Li, Yan. 2024. "High Security and Privacy Protection Model for STI/HIV Risk Prediction." Digital Health. 10, pp. 1-14. https://doi.org/DOI:10.1177/20552076241298425
Generous teacher: Good at distilling knowledge for student learning
Ding, Yifeng, Yang, Gaoming, Yin, Shuting, Zhang, Ji, Fang, Xianjin and Yang, Wencheng. 2024. "Generous teacher: Good at distilling knowledge for student learning." Image and Vision Computing. 150. https://doi.org/10.1016/j.imavis.2024.105199
Lightweight federated learning for STIs/HIV prediction
Nguyen, Thi Phuoc Van, Yang, Wencheng, Tang, Zhaohui, Xia, Xiaoyu, Mullens, Amy B., Dean, Judith A. and Li, Yan. 2024. "Lightweight federated learning for STIs/HIV prediction." Scientific Reports. 14 (1). https://doi.org/10.1038/s41598-024-56115-0
UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning
Jiang, Shui, Ge, Yanning, Yang, Xu, Yang, Wencheng and Cui, Hui. 2024. "UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning." Future Internet. 16 (3). https://doi.org/10.3390/fi16030105
Evaluating Cryptocurrency Market Risk on the Blockchain: An Empirical Study Using the ARMA-GARCH-VaR Model
Huang, Yongrong, Wang, Huiqing, Chen, Zhide, Feng, Chen, Zhu, Kexin, Yang, Xu and Yang, Wencheng. 2024. "Evaluating Cryptocurrency Market Risk on the Blockchain: An Empirical Study Using the ARMA-GARCH-VaR Model." IEEE Open Journal of the Computer Society. 5, pp. 83-94. https://doi.org/10.1109/OJCS.2024.3370603
Feature extraction and learning approaches for cancellable biometrics: A survey
Yang, Wencheng, Wang, Song, Hu, Jiankun, Tao, Xiaohui and Li, Yan. 2024. "Feature extraction and learning approaches for cancellable biometrics: A survey." CAAI Transactions on Intelligence Technology. 9 (1), pp. 4-25. https://doi.org/10.1049/cit2.12283
An Adaptive Feature Fusion Network for Alzheimer’s Disease Prediction
Wei, Shicheng, Li, Yan and Yang, Wencheng. 2023. "An Adaptive Feature Fusion Network for Alzheimer’s Disease Prediction." 12th International Conference on Health Information Science (HIS 2023). Melbourne, Australia 23 - 24 Oct 2023 Germany. https://doi.org/10.1007/978-981-99-7108-4
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
Yang, Wencheng, Wang, Song, Cui, Hui, Tang, Zhaohui and Li, Yan. 2023. "A Review of Homomorphic Encryption for Privacy-Preserving Biometrics." Sensors. 23 (7). https://doi.org/10.3390/s23073566
Hybrid KD-NFT: A multi-layered NFT assisted robust Knowledge Distillation framework for Internet of Things
Wang, Nai, Chen, Junjun, Wu, Di, Yang, Wencheng, Xiang, Yong and Sajjanhar, Atul. 2023. "Hybrid KD-NFT: A multi-layered NFT assisted robust Knowledge Distillation framework for Internet of Things." Journal of Information Security and Applications. 75. https://doi.org/10.1016/j.jisa.2023.103483
A review of multi-factor authentication in the Internet of Healthcare Things
Suleski, Tance, Ahmed, Mohiuddin, Yang, Wencheng and Wang, Eugene. 2023. "A review of multi-factor authentication in the Internet of Healthcare Things." Digital Health. 9, pp. 1-20. https://doi.org/10.1177/20552076231177144
Token-Based Biometric Enhanced Key Derivation for Authentication Over Wireless Networks
Cui, Hui, Yang, Xuechao, Yang, Wencheng, Qin, Baodong and Yi, Xun. 2023. "Token-Based Biometric Enhanced Key Derivation for Authentication Over Wireless Networks." IEEE Transactions on Network Science and Engineering. 10 (4), pp. 2347-2357. https://doi.org/10.1109/TNSE.2023.3246439
A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks
Bedari, Aseel, Wang, Song and Yang, Wencheng. 2022. "A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks." Sensors. 22 (19), pp. 1-16. https://doi.org/10.3390/s22197609
Multimedia security and privacy protection in the internet of things: research developments and challenges
Yang, Wencheng, Wang, Song, Hu, Jiankun and Karie, Nickson M.. 2022. "Multimedia security and privacy protection in the internet of things: research developments and challenges." International Journal of Multimedia Intelligence and Security. 4 (1), pp. 20-46. https://doi.org/10.1504/ijmis.2022.121282
A linear convolution-based cancelable fingerprint biometric authentication system
Yang, Wencheng, Wang, Song, Kang, James Jin, Johnstone, Michael N. and Bedari, Aseel. 2022. "A linear convolution-based cancelable fingerprint biometric authentication system." Computers and Security. 114, pp. 1-14. https://doi.org/10.1016/j.cose.2021.102583
A Review on Security Issues and Solutions of the Internet of Drones
Yang, Wencheng, Wang, Song, Yin, Xuefei, Wang, Xu and Hu, Jiankun. 2022. "A Review on Security Issues and Solutions of the Internet of Drones." IEEE Open Journal of the Computer Society. 3, pp. 96-110. https://doi.org/10.1109/OJCS.2022.3183003
Network Forensics in the Era of Artificial Intelligence
Yang, Wencheng, Johnstone, Michael N., Wang, Song, Karie, Nickson M., Bin Sahri, Nor Masri and Kang, James Jin. 2022. "Network Forensics in the Era of Artificial Intelligence." Ahmed, Mohiuddin, Islam, Sheikh Rabiul, Anwar, Adnan, Moustafa, Nour and Pathan, Al-Sakib Khan (ed.) Explainable Artificial Intelligence for Cyber Security: Next Generation Artificial Intelligence. Cham, Switzerland. Springer. pp. 171-190
Leveraging Artificial Intelligence Capabilities for Real-Time Monitoring of Cybersecurity Threats
Karie, Nickson M., Bin Sahri, Nor Masri Bin, Yang, Wencheng and Johnstone, Michael N.. 2022. "Leveraging Artificial Intelligence Capabilities for Real-Time Monitoring of Cybersecurity Threats." Ahmed, Mohiuddin, Islam, Sheikh Rabiul, Anwar, Adnan, Moustafa, Nour and Pathan, Al-Sakib Khan (ed.) Explainable Artificial Intelligence for Cyber Security: Next Generation Artificial Intelligence. Cham, Switzerland. Springer. pp. 141-169
Biometrics for internet‐of‐things security: A review
Yang, Wencheng, Wang, Song, Sahri, Nor Masri, Karie, Nickson M., Ahmed, Mohiuddin and Valli, Craig. 2021. "Biometrics for internet‐of‐things security: A review." Sensors. 21 (18). https://doi.org/10.3390/s21186163
Security and Forensics in the Internet of Things: Research Advances and Challenges
Yang, Wencheng, Johnstone, Michael N., Sikos, Leslie F. and Wang, Song. 2020. "Security and Forensics in the Internet of Things: Research Advances and Challenges." 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT). Sydney, Australia 21 - 21 Apr 2020 Australia. IEEE (Institute of Electrical and Electronics Engineers). pp. 12-17 https://doi.org/10.1109/ETSecIoT50046.2020.00007
A Critical Analysis of ECG-Based Key Distribution for Securing Wearable and Implantable Medical Devices
Zheng, Guanglou, Shankaran, Rajan, Yang Wencheng, Valli, Craig, Qiao, Li, Orgun, Mehmet A. and Mukhopadhyay, Subhas Chandra. 2019. "A Critical Analysis of ECG-Based Key Distribution for Securing Wearable and Implantable Medical Devices." IEEE Sensors Journal. 19 (3), pp. 1186-1198. https://doi.org/10.1109/JSEN.2018.2879929