Thermoelectric properties of Ni0. 05Mo3Sb5. 4Te1. 6 composites with NiSb nanocoating

Article


Nandihalli, Nandihalli, Robert, Liang, Wijethunge, Dimuthu, Zhou, Norman and Kleinke, Holger. 2018. "Thermoelectric properties of Ni0. 05Mo3Sb5. 4Te1. 6 composites with NiSb nanocoating." AIP Advances. 8. https://doi.org/10.1063/1.5038675
Article Title

Thermoelectric properties of Ni0. 05Mo3Sb5. 4Te1. 6 composites with NiSb nanocoating

ERA Journal ID200127
Article CategoryArticle
AuthorsNandihalli, Nandihalli, Robert, Liang, Wijethunge, Dimuthu, Zhou, Norman and Kleinke, Holger
Journal TitleAIP Advances
Journal Citation8
Article Number125304
Number of Pages12
Year2018
PublisherAIP Publishing
Place of PublicationUnited States
ISSN2158-3226
Digital Object Identifier (DOI)https://doi.org/10.1063/1.5038675
Web Address (URL)https://pubs.aip.org/aip/adv/article/8/12/125304/127142
Abstract

NiSb nanoparticles by 0.034, 0.074 and 0.16 volume fractions were successfully coated on bulk polycrystalline Ni0.05Mo3Sb5.4Te1.6 thermoelectric (TE) particles through a solvothermal route without deteriorating the bulk Ni0.05Mo3Sb5.4Te1.6 material. The samples were consolidated through hot pressing and their thermoelectric (TE) properties were characterized. At 400 K, 500 K, and 600 K, 0.074 NiSb sample exhibited 22%, 16% and 11.3% increases in the power factor (P.F.) compared to bulk material. The main contributing factor to this enhanced power factor is the elevated electrical conductivity. For the same sample, the reciprocal relationship between Seebeck coefficient and electrical conductivity is decoupled. Sample 0.16 NiSb exhibited the highest electrical conductivity among the three samples. The thermal conductivity of the 0.16 sample was less temperature sensitive compared to other samples. HRTEM and SEM tools were applied to comprehend microstructural features and their relationship to TE transport properties. Pore effect on the thermal and electrical conductivity was elucidated. This study shows that grain-boundary manipulation via this wet chemistry technique is indeed an economically viable method to fabricate and optimize the transport properties of bulk TE materials.

KeywordsChemical synthesis; Interfaces; Thermoelectric effects; Nanoparticle; Wet chemistry; Composite materials ; Transport properties; Phonons; Electrical conductivity; Thermal conductivity
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020401607. Metals and alloy materials
Byline AffiliationsUniversity of Waterloo, Canada
University of Moratuwa, Sri Lanka
School of Engineering
Permalink -

https://research.usq.edu.au/item/z7653/thermoelectric-properties-of-ni0-05mo3sb5-4te1-6-composites-with-nisb-nanocoating

Download files


Published Version
125304_1_online.pdf
License: CC BY 4.0
File access level: Anyone

  • 37
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Engineering Interfacial Molecular Interactions on Ag Hollow Fibre Gas Diffusion Electrodes for High Efficiency in CO2 Conversion to CO
Kuang, Yizhu, Chen, Guoliang, Herath Mudiyanselage, Dimuthu, Rabiee, Hesamoddin, Ma, Beibei, Dorosti, Fatereh, Nanjundan, Ashok Kumar, Zhu, Zhonghua, Wang, Hao and Ge, Lei. 2024. "Engineering Interfacial Molecular Interactions on Ag Hollow Fibre Gas Diffusion Electrodes for High Efficiency in CO2 Conversion to CO." Chemistry: A European Journal. https://doi.org/10.1002/chem.202403251
Electric Polarization and Charge Transfer Driven Antiferromagnetic Half-Metallicity in 2D VS2 /MoSSe Heterostructures
Herath, Dimuthu. 2023. "Electric Polarization and Charge Transfer Driven Antiferromagnetic Half-Metallicity in 2D VS2 /MoSSe Heterostructures." Centre for Theoretical and Computational Molecular Science Symposium 2023. Australia 13 - 14 Mar 2023 Australia.
First-Principles Study of the Enhanced Magnetic Anisotropy and Transition Temperature in a CrSe2 Monolayer via Hydrogenation
Munirah, Munirah, Tang, Cheng, Wijethunge, Dimuthu, Qi, Dongchen and Du, Aijun. 2022. "First-Principles Study of the Enhanced Magnetic Anisotropy and Transition Temperature in a CrSe2 Monolayer via Hydrogenation." ACS Applied Electronic Materials. 4 (7), pp. 3240-3245. https://doi.org/10.1021/acsaelm.2c00476
Controllable Polarization and Doping in Ferroelectric In2Se3 Monolayers and Heterobilayers via Intrinsic Defect Engineering
Tang, Cheng, Zhang, Lei, Wijethunge, Dimuthu, Ostrikov, Kostya Ken and Du, Aijun. 2021. "Controllable Polarization and Doping in Ferroelectric In2Se3 Monolayers and Heterobilayers via Intrinsic Defect Engineering." The Journal of Physical Chemistry C: Energy, Materials, and Catalysis. 125 (44), pp. 24648-24654. https://doi.org/10.1021/acs.jpcc.1c07141
Interfacing 2D VS2 with Janus MoSSe: Antiferromagnetic electric polarization and charge transfer driven Half-metallicity
Wijethunge, Dimuthu, Zhang, Lei, Tang, Cheng, Sanvito, Stefano and Du, Aijun. 2021. "Interfacing 2D VS2 with Janus MoSSe: Antiferromagnetic electric polarization and charge transfer driven Half-metallicity." Applied Surface Science. 570. https://doi.org/10.1016/j.apsusc.2021.151129
Prediction of two-dimensional ferroelectric metal Mxenes
Wijethunge, Dimuthu, Zhang, Lei and Du, Aijun. 2021. "Prediction of two-dimensional ferroelectric metal Mxenes." Journal of Materials Chemistry C. 9 (34), pp. 11343-11348. https://doi.org/10.1039/D1TC02213J
Metal-free graphene/boron nitride heterointerface for CO2 reduction: Surface curvature controls catalytic activity and selectivity
Mao, Xin, Wijethunge, Dimuthu, Zhang, Lei, Wang, Sufan, Yan, Cheng, Zhu, Zhonghua and Du, Aijun. 2020. "Metal-free graphene/boron nitride heterointerface for CO2 reduction: Surface curvature controls catalytic activity and selectivity." Ecomat. 2 (1). https://doi.org/10.1002/eom2.12013
Computational screening of MN 4 (M= Ti–Cu) based metal organic frameworks for CO 2 reduction using the d-band centre as a descriptor
Mao, Mao, Tang, Cheng, He, Tianwei, Wijethunge, Dimuthu, Yan, Cheng, Zhu, Zhonghua and Du, Aijun. 2020. "Computational screening of MN 4 (M= Ti–Cu) based metal organic frameworks for CO 2 reduction using the d-band centre as a descriptor." Nanoscale. 12 (10), pp. 6188-6194. https://doi.org/10.1039/C9NR09529B
Bandstructure engineering in 2D materials using Ferroelectric materials
Wijethunge, Dimuthu, Tang, Cheng, Zhang, Chunmei, Zhang, Lei, Mao, Xin and Du, Aijun. 2020. "Bandstructure engineering in 2D materials using Ferroelectric materials." Applied Surface Science. 513. https://doi.org/10.1016/j.apsusc.2020.145817
Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching
Wijethunge, Dimuthu, Zhang, Lei, Tang, Cheng and Du, Aijun. 2020. "Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching." Frontiers of Physics. 15. https://doi.org/10.1007/s11467-020-0987-z
High efficient nanostructured PbSe0. 5Te0. 5 exhibiting broad figure-of-merit plateau
Nandihalli, Nandihalli, Wijethunge, Dimuthu, Kim, Kyomin, Kim, Jiyong and Gayner, Chhatrasal. 2019. "High efficient nanostructured PbSe0. 5Te0. 5 exhibiting broad figure-of-merit plateau." Journal of Alloys and Compounds. 785, pp. 862-870. https://doi.org/10.1016/j.jallcom.2019.01.105
New evaluation parameter for wearable thermoelectric generators
Wijethunge, Dimuthu and Kim, Woochul. 2018. "New evaluation parameter for wearable thermoelectric generators ." Journal of Applied Physics. 123 (14). https://doi.org/10.1063/1.5018762
Simplified human thermoregulatory model for designing wearable thermoelectric devices
Wijethunge, Dimuthu, Kim, Donggyu and Kim, Woochul. 2018. "Simplified human thermoregulatory model for designing wearable thermoelectric devices." Journal of Physics D: Applied Physics. 51. https://doi.org/10.1088/1361-6463/aaa17e
More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials
Hwang, Junphil, Kim, Hoon, Wijethunge, Dimuthu, Nandihalli, Nagaraj, Eom, Yoomin, Park, Hwanjoo, Kim, Jungwon and Kim, Woochul. 2017. "More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials." Applied Energy. 205, pp. 1459-1466. https://doi.org/10.1016/j.apenergy.2017.09.080
Mat-like flexible thermoelectric system based on rigid inorganic bulk materials
Park, Hwanjoo, Kim, Donggyu, Eom, Yoomin, Wijethunge, Dimuthu, Hwang, Junphil, Kim, Hoon and Kim, Woochul. 2017. "Mat-like flexible thermoelectric system based on rigid inorganic bulk materials." Journal of Physics D: Applied Physics. 50. https://doi.org/10.1088/1361-6463/aa94f7
Flexible thermoelectric power generation system based on rigid inorganic bulk materials
Eom, Yoomin, Wijethunge, Dimuthu, Park, Hwanjoo, Park, Sang Hyun and Kim, Woochul. 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials." Applied Energy. 206, pp. 649-656. https://doi.org/10.1016/j.apenergy.2017.08.231