Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential

Article


Gatland, J.R., Santos, I. R., Maher, D. T., Duncan, T. M. and Erler, D. V.. 2014. "Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential." Journal of Geophysical Research: Biogeosciences. 119 (8), pp. 1698-1716. https://doi.org/10.1002/2013JG002544
Article Title

Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential

ERA Journal ID201010
Article CategoryArticle
AuthorsGatland, J.R., Santos, I. R., Maher, D. T., Duncan, T. M. and Erler, D. V.
Journal TitleJournal of Geophysical Research: Biogeosciences
Journal Citation119 (8), pp. 1698-1716
Number of Pages19
Year2014
PublisherJohn Wiley & Sons
Place of PublicationUnited States
ISSN2169-8953
2169-8961
Digital Object Identifier (DOI)https://doi.org/10.1002/2013JG002544
Web Address (URL)https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013JG002544
Abstract

Floods frequently produce deoxygenation and acidification in waters of artificially drained coastal acid sulfate soil (CASS) wetlands. These conditions are ideal for carbon dioxide and methane production. We investigated CO2 and CH4 dynamics and quantified carbon loss within an artificially drained CASS wetland during and after a flood. We separated the system into wetland soils (inundated soil during flood and exposed soil during post flood period), drain water, and creek water and performed measurements of free CO2 ([CO2*]), CH4, dissolved inorganic and organic carbon (DIC and DOC), stable carbon isotopes, and radon (222Rn: natural tracer for groundwater discharge) to determine aquatic carbon loss pathways. [CO2*] and CH4 values in the creek reached 721 and 81 μM, respectively, 2 weeks following a flood during a severe deoxygenation phase (dissolved oxygen ~ 0% saturation). CO2 and CH4 emissions from the floodplain to the atmosphere were 17-fold and 170-fold higher during the flooded period compared to the post-flood period, respectively. CO2 emissions accounted for about 90% of total floodplain mass carbon losses during both the flooded and post-flood periods. Assuming a 20 and 100 year global warming potential (GWP) for CH4 of 105 and 27 CO2-equivalents, CH4 emission contributed to 85% and 60% of total floodplain CO2-equivalent emissions, respectively. Stable carbon isotopes (δ13C in dissolved CO2 and CH4) and 222Rn indicated that carbon dynamics within the creek were more likely driven by drainage of surface floodwaters from the CASS wetland rather than groundwater seepage. This study demonstrated that >90% of CO2 and CH4 emissions from the wetland system occurred during the flood period and that the inundated wetland was responsible for ~95% of CO2-equivalent emissions over the floodplain.

Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020410501. Environmental biogeochemistry
Byline AffiliationsSouthern Cross University
Permalink -

https://research.usq.edu.au/item/z94zz/carbon-dioxide-and-methane-emissions-from-an-artificially-drained-coastal-wetland-during-a-flood-implications-for-wetland-global-warming-potential

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Whole system carbon cycling during the growing season of a sugarcane crop in the tweed valley
Webb, J. R., Quirk, R. G., Santos, I. R., Maher, D. T., Macdonald, B. C. T., Robson, B., Isaac, P., McHugh, I. and Webb, J.. "Whole system carbon cycling during the growing season of a sugarcane crop in the tweed valley." Australian Society of Sugar Cane Technologists Conference.
Soil greenhouse gas emissions under enhanced efficiency and urea nitrogen fertilizer from Australian irrigated aerobic rice production
Webb, J.. 2024. "Soil greenhouse gas emissions under enhanced efficiency and urea nitrogen fertilizer from Australian irrigated aerobic rice production." Agrosystems, Geosciences, & Environment. 7 (4). https://doi.org/10.1002/agg2.70004
Semi-arid irrigation farm dams are a small source of greenhouse gas emissions
Webb, Jackie R., Quayle, Wendy C., Ballester, Carlos and Wells, Naomi S.. 2023. "Semi-arid irrigation farm dams are a small source of greenhouse gas emissions." Biogeochemistry: an international journal. 166 (2), pp. 123-138. https://doi.org/10.1007/s10533-023-01100-4
Poultry litter increased irrigated cotton N uptake with limited improvement on 15N-labelled urea recovery over one season
Webb, Jackie R., Awale, Rakesh and Quayle, Wendy C.. 2023. "Poultry litter increased irrigated cotton N uptake with limited improvement on 15N-labelled urea recovery over one season." Nutrient Cycling in Agroecosystems. 125 (2), pp. 137-152. https://doi.org/10.1007/s10705-022-10251-z
Differential Controls of Greenhouse Gas (CO2, CH4, and N2O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains
Jensen, Sydney A., Webb, Jackie R., Simpson, Gavin L., Baulch, Helen M., Leavitt, Peter R. and Finlay, Kerri. 2023. "Differential Controls of Greenhouse Gas (CO2, CH4, and N2O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains." Journal of Geophysical Research: Biogeosciences. 128 (4). https://doi.org/10.1029/2022JG007261
Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange
Casas-Ruiz, Joan P., Bodmer, Pascal, Bona, Kelly Ann, Butman, David, Couturier, Mathilde, Emilson, Erik J. S., Finlay, Kerri, Genet, Hélène, Hayes, Daniel, Karlsson, Jan, Paré, David, Peng, Changhui, Striegl, Rob, Webb, Jackie, Wei, Xinyuan, Ziegler, Susan E. and del Giorgio, Paul A.. 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange." Nature Communications. 14 (1). https://doi.org/10.1038/s41467-023-37232-2
Fire in the Earth System: Introduction to the Special Collection
East, Amy, AghaKouchak, Amir, Caprarelli, Graziella, Filippelli, Gabriel, Florindo, Fabio, Luce, Charles, Rajaram, Harihar, Russell, Lynn, Santin, Cristina and Santos, Isaac. 2023. "Fire in the Earth System: Introduction to the Special Collection." Journal of Geophysical Research: Earth Surface. 128 (4). https://doi.org/10.1029/2023JF007184
Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands
Malerba, Martino E., Friess, Daniel A., Peacock, Mike, Grinham, Alistair, Taillardat, Pierre, Rosentreter, Judith A., Webb, Jackie, Iram, Naima, Al-Haj, Alia N. and Macreadie, Peter I.. 2022. "Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands." One Earth. 5 (12), pp. 1336-1341. https://doi.org/10.1016/j.oneear.2022.11.003
Seasonal variability of CO2, CH4, and N2O content and fluxes in small agricultural reservoirs of the northern Great Plains
Jensen, Sydney A., Webb, Jackie R., Simpson, Gavin L., Baulch, Helen M., Leavitt, Peter R. and Finlay, Kerri. 2022. "Seasonal variability of CO2, CH4, and N2O content and fluxes in small agricultural reservoirs of the northern Great Plains." Frontiers in Environmental Science. 10. https://doi.org/10.3389/fenvs.2022.895531
Classifying Mixing Regimes in Ponds and Shallow Lakes
Holgerson, Meredith A, Richardson, David C., Roith, Joseph, Bortolotti, Lauren E., Finlay, Kerri, Hornbach, Daniel J., Gurung, Kshitij, Ness, Andrew, Andersen, Mikkel R., Bansal, Sheel, Finlay, Jacques C., Cianci-Gaskill, Jacob A., Hahn, Shannon, Janke, Benjamin D., McDonald, Cory, Mesman, Jorrit P., North, Rebecca L., Robert, Cassandra O., Sweetman, J.N. and Webb, Jackie R.. 2022. "Classifying Mixing Regimes in Ponds and Shallow Lakes." Water Resources Research. 58 (7). https://doi.org/10.1029/2022WR032522
A review of indirect N2O emission factors from artificial agricultural waters
Webb, Jackie R, Clough, Tim J and Quayle, Wendy C. 2021. "A review of indirect N2O emission factors from artificial agricultural waters." Environmental Research Letters. 16 (4). https://doi.org/10.1088/1748-9326/abed00
Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal
Davis, Kay, Santos, Isaac R., Perkins, Anita K., Webb, Jackie R. and Gleeson, Justin. 2020. "Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal." Estuarine, Coastal and Shelf Science. 235. https://doi.org/10.1016/j.ecss.2019.106567
Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems
Webb, Jackie R., Santos, Isaac R., Maher, Damien T, Tait, Douglas R., Cyronak, Tyler, Sadat-Noori, Mahmood, Macklin, Paul and Jeffrey, Luke C.. 2019. "Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems." Limnology and Oceanography. 64 (1), pp. 182-196. https://doi.org/10.1002/lno.11028
The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review
Webb, Jackie R., Santos, Isaac R., Maher, Damien T. and Finlay, Kerri. 2019. "The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review." Ecosystems. 22 (3), pp. 508-527. https://doi.org/10.1007/s10021-018-0284-7
Regulation of carbon dioxide and methane in small agricultural reservoirs: Optimizing potential for greenhouse gas uptake
Webb, Jackie R., Leavitt, Peter R., Simpson, Gavin L., Baulch, Helen M., Haig, Heather A., Hodder, Kyle R. and Finlay, Kerri. 2019. "Regulation of carbon dioxide and methane in small agricultural reservoirs: Optimizing potential for greenhouse gas uptake." Biogeosciences. 16 (21), pp. 4211-4227. https://doi.org/10.5194/bg-16-4211-2019
Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink
Webb, Jackie R., Hayes, Nicole M., Simpson, Gavin L., Leavitt, Peter R., Baulch, Helen M. and Finlay, Kerri. 2019. "Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink." Proceedings of the National Academy of Sciences (PNAS). 116 (20), pp. 9814-9819. https://doi.org/10.1073/pnas.1820389116
Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands
Santos, Isaac R., Maher, Damien T., Larkin, Reece, Webb, Jackie R. and Sanders, Christian J.. 2019. "Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands." Limnology and Oceanography. 64 (3), pp. 996-1013. https://doi.org/10.1002/lno.11090
Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide Dynamics in a Coastal Lagoon
Maher, Damien T., Call, Mitchell, Macklin, Paul, Webb, Jackie R. and Santos, Isaac R.. 2019. "Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide Dynamics in a Coastal Lagoon." Estuaries and Coasts. 42 (4), pp. 1015-1031. https://doi.org/10.1007/s12237-019-00532-2
Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient
Looman, Arun, Santos, Isaac R., Tait, Douglas R., Webb, Jackie, Holloway, Ceylena and Maher, Damien T.. 2019. "Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient." Aquatic Sciences: research across boundaries. 81 (1). https://doi.org/10.1007/s00027-018-0617-9
Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle
Webb, Jackie R., Santos, Isaac R., Maher, Damien T., Macdonald, Ben, Robson, Barbara, Isaac, Peter and McHugh, Ian. 2018. "Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle." Agricultural and Forest Meteorology. 260-261, pp. 262-272. https://doi.org/10.1016/j.agrformet.2018.06.015
Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods
Webb, Jackie R., Santos, Isaac R., Robson, Barbara, Macdonald, Ben, Jeffrey, Luke and Maher, d Damien T.. 2017. "Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods." Water Resources Research. 53 (1), pp. 544-562. https://doi.org/10.1002/2016WR019735
Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers
Webb, Jackie R., Santos, Isaac R., Tait, Douglas R., Sippo, James Z., Macdonald, Ben C. T., Robson, Barbara and Maher, Damien T.. 2016. "Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers." Chemical Geology. 440, pp. 313-325. https://doi.org/10.1016/j.chemgeo.2016.07.025
Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators
Webb, Jackie R., Maher, Damien T. and Santos, Isaac R.. 2016. "Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators." Limnology and Oceanography: Methods. 14 (5), pp. 323-337. https://doi.org/10.1002/lom3.10092
Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream
Looman, Arún, Santos, Isaac R., Tait, Douglas R., Webb, Jackie R., Sullivan, Caroline A. and Maher, Damien T.. 2016. "Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream." Science of the Total Environment. 550, pp. 645-657. https://doi.org/10.1016/j.scitotenv.2016.01.082
Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia)
Perkins, Anita K., Santos, Isaac R., Sadat-Noori, Mahmood, Gatland, Jackie R. and Maher, Damien T.. 2015. "Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia)." Environmental Earth Sciences. 74 (1), pp. 779-792. https://doi.org/10.1007/s12665-015-4082-7
Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application
Erler, D. V., Duncan, T. M., Murray, R., Maher, D. T., Santos, I. R., Gatland, J. R., Mangion, P. and Eyre, B. D.. 2015. "Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application." Limnology and Oceanography: Methods. 13 (8), pp. 391-401. https://doi.org/10.1002/lom3.10032