The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review

Article


Webb, Jackie R., Santos, Isaac R., Maher, Damien T. and Finlay, Kerri. 2019. "The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review." Ecosystems. 22 (3), pp. 508-527. https://doi.org/10.1007/s10021-018-0284-7
Article Title

The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review

ERA Journal ID3240
Article CategoryArticle
AuthorsWebb, Jackie R., Santos, Isaac R., Maher, Damien T. and Finlay, Kerri
Journal TitleEcosystems
Journal Citation22 (3), pp. 508-527
Number of Pages20
Year2019
PublisherSpringer
ISSN1432-9840
1435-0629
Digital Object Identifier (DOI)https://doi.org/10.1007/s10021-018-0284-7
Web Address (URL)https://link.springer.com/article/10.1007/s10021-018-0284-7
Abstract

The growing importance of resolving ecosystem carbon budgets has resulted in more studies integrating terrestrial and aquatic carbon fluxes. Although recent estimates highlight the importance of inland waters in global carbon budgets, the extent to which aquatic pathways contribute to the net ecosystem carbon budget (NECB) of different ecosystems remains poorly understood. Here, we provide a cross-ecosystem review of annual carbon budgets integrating terrestrial and aquatic fluxes. Large variability in the proportion of aquatic carbon offset to terrestrial net ecosystem productivity (NEP) was observed, with aquatic offsets ranging from < 1% in a boreal forest to 590% in a freshwater marsh. The total aquatic carbon flux was positively correlated with terrestrial NEP, suggesting highly productive ecosystems will have greater aquatic carbon offsets. However, due to an order of magnitude difference in the range of terrestrial NEP (~ 1000 g C m−2 y−1) compared to aquatic fluxes (~ 100 g C m−2 y−1), ecosystems with small NEP’s had greater relative aquatic carbon offsets overall in their NECB’s. Northern hemisphere peatlands and forests represented 54% of all integrated carbon budget studies collected, indicating a severe ecosystem and spatial bias. Mangroves, agricultural, and disturbed ecosystems were the most underrepresented, yet had extreme ranges in terrestrial NEP and NECB (− 638 to 1170 g C m−2 y−1). To improve our mechanistic understanding of the role of aquatic pathways in NECB’s, more site-specific integrative studies need to be undertaken across a broader range of climatic regions and ecosystem types.

Keywordsnet ecosystem carbon balance; catchment; aquatic ecosystems; terrestrial ecosystems; carbon accounting; aquatic pathways
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020379999. Other earth sciences not elsewhere classified
Public NotesFiles associated with this item cannot be displayed due to copyright restrictions.
Byline AffiliationsUniversity of Regina, Canada
Southern Cross University
Permalink -

https://research.usq.edu.au/item/z950z/the-importance-of-aquatic-carbon-fluxes-in-net-ecosystem-carbon-budgets-a-catchment-scale-review

  • 2
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Whole system carbon cycling during the growing season of a sugarcane crop in the tweed valley
Webb, J. R., Quirk, R. G., Santos, I. R., Maher, D. T., Macdonald, B. C. T., Robson, B., Isaac, P., McHugh, I. and Webb, J.. "Whole system carbon cycling during the growing season of a sugarcane crop in the tweed valley." Australian Society of Sugar Cane Technologists Conference.
Soil greenhouse gas emissions under enhanced efficiency and urea nitrogen fertilizer from Australian irrigated aerobic rice production
Webb, J.. 2024. "Soil greenhouse gas emissions under enhanced efficiency and urea nitrogen fertilizer from Australian irrigated aerobic rice production." Agrosystems, Geosciences, & Environment. 7 (4). https://doi.org/10.1002/agg2.70004
Semi-arid irrigation farm dams are a small source of greenhouse gas emissions
Webb, Jackie R., Quayle, Wendy C., Ballester, Carlos and Wells, Naomi S.. 2023. "Semi-arid irrigation farm dams are a small source of greenhouse gas emissions." Biogeochemistry: an international journal. 166 (2), pp. 123-138. https://doi.org/10.1007/s10533-023-01100-4
Poultry litter increased irrigated cotton N uptake with limited improvement on 15N-labelled urea recovery over one season
Webb, Jackie R., Awale, Rakesh and Quayle, Wendy C.. 2023. "Poultry litter increased irrigated cotton N uptake with limited improvement on 15N-labelled urea recovery over one season." Nutrient Cycling in Agroecosystems. 125 (2), pp. 137-152. https://doi.org/10.1007/s10705-022-10251-z
Differential Controls of Greenhouse Gas (CO2, CH4, and N2O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains
Jensen, Sydney A., Webb, Jackie R., Simpson, Gavin L., Baulch, Helen M., Leavitt, Peter R. and Finlay, Kerri. 2023. "Differential Controls of Greenhouse Gas (CO2, CH4, and N2O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains." Journal of Geophysical Research: Biogeosciences. 128 (4). https://doi.org/10.1029/2022JG007261
Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange
Casas-Ruiz, Joan P., Bodmer, Pascal, Bona, Kelly Ann, Butman, David, Couturier, Mathilde, Emilson, Erik J. S., Finlay, Kerri, Genet, Hélène, Hayes, Daniel, Karlsson, Jan, Paré, David, Peng, Changhui, Striegl, Rob, Webb, Jackie, Wei, Xinyuan, Ziegler, Susan E. and del Giorgio, Paul A.. 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange." Nature Communications. 14 (1). https://doi.org/10.1038/s41467-023-37232-2
Fire in the Earth System: Introduction to the Special Collection
East, Amy, AghaKouchak, Amir, Caprarelli, Graziella, Filippelli, Gabriel, Florindo, Fabio, Luce, Charles, Rajaram, Harihar, Russell, Lynn, Santin, Cristina and Santos, Isaac. 2023. "Fire in the Earth System: Introduction to the Special Collection." Journal of Geophysical Research: Earth Surface. 128 (4). https://doi.org/10.1029/2023JF007184
Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands
Malerba, Martino E., Friess, Daniel A., Peacock, Mike, Grinham, Alistair, Taillardat, Pierre, Rosentreter, Judith A., Webb, Jackie, Iram, Naima, Al-Haj, Alia N. and Macreadie, Peter I.. 2022. "Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands." One Earth. 5 (12), pp. 1336-1341. https://doi.org/10.1016/j.oneear.2022.11.003
Seasonal variability of CO2, CH4, and N2O content and fluxes in small agricultural reservoirs of the northern Great Plains
Jensen, Sydney A., Webb, Jackie R., Simpson, Gavin L., Baulch, Helen M., Leavitt, Peter R. and Finlay, Kerri. 2022. "Seasonal variability of CO2, CH4, and N2O content and fluxes in small agricultural reservoirs of the northern Great Plains." Frontiers in Environmental Science. 10. https://doi.org/10.3389/fenvs.2022.895531
Classifying Mixing Regimes in Ponds and Shallow Lakes
Holgerson, Meredith A, Richardson, David C., Roith, Joseph, Bortolotti, Lauren E., Finlay, Kerri, Hornbach, Daniel J., Gurung, Kshitij, Ness, Andrew, Andersen, Mikkel R., Bansal, Sheel, Finlay, Jacques C., Cianci-Gaskill, Jacob A., Hahn, Shannon, Janke, Benjamin D., McDonald, Cory, Mesman, Jorrit P., North, Rebecca L., Robert, Cassandra O., Sweetman, J.N. and Webb, Jackie R.. 2022. "Classifying Mixing Regimes in Ponds and Shallow Lakes." Water Resources Research. 58 (7). https://doi.org/10.1029/2022WR032522
A review of indirect N2O emission factors from artificial agricultural waters
Webb, Jackie R, Clough, Tim J and Quayle, Wendy C. 2021. "A review of indirect N2O emission factors from artificial agricultural waters." Environmental Research Letters. 16 (4). https://doi.org/10.1088/1748-9326/abed00
Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal
Davis, Kay, Santos, Isaac R., Perkins, Anita K., Webb, Jackie R. and Gleeson, Justin. 2020. "Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal." Estuarine, Coastal and Shelf Science. 235. https://doi.org/10.1016/j.ecss.2019.106567
Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems
Webb, Jackie R., Santos, Isaac R., Maher, Damien T, Tait, Douglas R., Cyronak, Tyler, Sadat-Noori, Mahmood, Macklin, Paul and Jeffrey, Luke C.. 2019. "Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems." Limnology and Oceanography. 64 (1), pp. 182-196. https://doi.org/10.1002/lno.11028
Regulation of carbon dioxide and methane in small agricultural reservoirs: Optimizing potential for greenhouse gas uptake
Webb, Jackie R., Leavitt, Peter R., Simpson, Gavin L., Baulch, Helen M., Haig, Heather A., Hodder, Kyle R. and Finlay, Kerri. 2019. "Regulation of carbon dioxide and methane in small agricultural reservoirs: Optimizing potential for greenhouse gas uptake." Biogeosciences. 16 (21), pp. 4211-4227. https://doi.org/10.5194/bg-16-4211-2019
Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink
Webb, Jackie R., Hayes, Nicole M., Simpson, Gavin L., Leavitt, Peter R., Baulch, Helen M. and Finlay, Kerri. 2019. "Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink." Proceedings of the National Academy of Sciences (PNAS). 116 (20), pp. 9814-9819. https://doi.org/10.1073/pnas.1820389116
Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands
Santos, Isaac R., Maher, Damien T., Larkin, Reece, Webb, Jackie R. and Sanders, Christian J.. 2019. "Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands." Limnology and Oceanography. 64 (3), pp. 996-1013. https://doi.org/10.1002/lno.11090
Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide Dynamics in a Coastal Lagoon
Maher, Damien T., Call, Mitchell, Macklin, Paul, Webb, Jackie R. and Santos, Isaac R.. 2019. "Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide Dynamics in a Coastal Lagoon." Estuaries and Coasts. 42 (4), pp. 1015-1031. https://doi.org/10.1007/s12237-019-00532-2
Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient
Looman, Arun, Santos, Isaac R., Tait, Douglas R., Webb, Jackie, Holloway, Ceylena and Maher, Damien T.. 2019. "Dissolved carbon, greenhouse gases, and δ13C dynamics in four estuaries across a land use gradient." Aquatic Sciences: research across boundaries. 81 (1). https://doi.org/10.1007/s00027-018-0617-9
Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle
Webb, Jackie R., Santos, Isaac R., Maher, Damien T., Macdonald, Ben, Robson, Barbara, Isaac, Peter and McHugh, Ian. 2018. "Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle." Agricultural and Forest Meteorology. 260-261, pp. 262-272. https://doi.org/10.1016/j.agrformet.2018.06.015
Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods
Webb, Jackie R., Santos, Isaac R., Robson, Barbara, Macdonald, Ben, Jeffrey, Luke and Maher, d Damien T.. 2017. "Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods." Water Resources Research. 53 (1), pp. 544-562. https://doi.org/10.1002/2016WR019735
Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers
Webb, Jackie R., Santos, Isaac R., Tait, Douglas R., Sippo, James Z., Macdonald, Ben C. T., Robson, Barbara and Maher, Damien T.. 2016. "Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers." Chemical Geology. 440, pp. 313-325. https://doi.org/10.1016/j.chemgeo.2016.07.025
Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators
Webb, Jackie R., Maher, Damien T. and Santos, Isaac R.. 2016. "Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators." Limnology and Oceanography: Methods. 14 (5), pp. 323-337. https://doi.org/10.1002/lom3.10092
Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream
Looman, Arún, Santos, Isaac R., Tait, Douglas R., Webb, Jackie R., Sullivan, Caroline A. and Maher, Damien T.. 2016. "Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream." Science of the Total Environment. 550, pp. 645-657. https://doi.org/10.1016/j.scitotenv.2016.01.082
Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia)
Perkins, Anita K., Santos, Isaac R., Sadat-Noori, Mahmood, Gatland, Jackie R. and Maher, Damien T.. 2015. "Groundwater seepage as a driver of CO2 evasion in a coastal lake (Lake Ainsworth, NSW, Australia)." Environmental Earth Sciences. 74 (1), pp. 779-792. https://doi.org/10.1007/s12665-015-4082-7
Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application
Erler, D. V., Duncan, T. M., Murray, R., Maher, D. T., Santos, I. R., Gatland, J. R., Mangion, P. and Eyre, B. D.. 2015. "Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application." Limnology and Oceanography: Methods. 13 (8), pp. 391-401. https://doi.org/10.1002/lom3.10032
Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential
Gatland, J.R., Santos, I. R., Maher, D. T., Duncan, T. M. and Erler, D. V.. 2014. "Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential." Journal of Geophysical Research: Biogeosciences. 119 (8), pp. 1698-1716. https://doi.org/10.1002/2013JG002544