Position-aware stepwise tagging method for triples extraction of entity-relationship
Article
| Article Title | Position-aware stepwise tagging method for triples extraction of entity-relationship |
|---|---|
| Article Category | Article |
| Authors | Wang, Yuan, Shi, Kaize and Niu, Zhendong |
| Journal Title | Data Analysis and Knowledge Discovery |
| Journal Citation | 5 (10), pp. 71-80 |
| Number of Pages | 10 |
| Year | 2021 |
| Publisher | Chinese Academy of Sciences |
| Place of Publication | China |
| ISSN | 2096-3467 |
| Digital Object Identifier (DOI) | https://doi.org/10.11925/infotech.2096-3467.2021.0302 |
| Abstract | [Objective] This paper designs a joint model for overlapping scenes, aiming to effectively extract triples from unstructured texts. [Methods] We designed a tagging method with position-aware stepwise technique. First, the main entities were determined by tagging their start and end positions. Then, we tagged the corresponding objects under each predefined relations. We also added multiple position-aware information to the tagging procedures. Finally, we shared the encoded sequences with the pre-order results and the attention mechanism. [Results] We examined our new model with DuIE, a Chinese public dataset. The performance of our method is better than those of the baseline models, with an F1 value of 0.886. We also verified the effectiveness of the model’s components through ablation studies. [Limitations] More research is needed to investigate the occasionally nested entities. [Conclusions] The proposed method could effectively address the issues facing triple extraction for overlapping scenes, and provide reference for future studies. |
| Keywords | Joint extraction; Position-aware; Stepwise tagging method |
| Contains Sensitive Content | Does not contain sensitive content |
| ANZSRC Field of Research 2020 | 4602. Artificial intelligence |
| Public Notes | There are no files associated with this item. |
| Byline Affiliations | Beijing Institute of Technology, China |
| University of Technology Sydney |
https://research.usq.edu.au/item/100987/position-aware-stepwise-tagging-method-for-triples-extraction-of-entity-relationship
12
total views0
total downloads4
views this month0
downloads this month