Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network

Article


Zhu, Yifan, Lin, Qika, Lu, Hao, Shi, Kaize, Liu, Donglei, Chambua, James, Wang, Shanshan and Niu, Zhendong. 2023. "Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network ." IEEE Transactions on Knowledge and Data Engineering. 35 (4), pp. 4178-4189. https://doi.org/10.1109/TKDE.2021.3125424
Article Title

Recommending Learning Objects Through Attentive Heterogeneous Graph Convolution and Operation-Aware Neural Network

ERA Journal ID17876
Article CategoryArticle
AuthorsZhu, Yifan, Lin, Qika, Lu, Hao, Shi, Kaize, Liu, Donglei, Chambua, James, Wang, Shanshan and Niu, Zhendong
Journal TitleIEEE Transactions on Knowledge and Data Engineering
Journal Citation35 (4), pp. 4178-4189
Number of Pages12
Year2023
PublisherIEEE (Institute of Electrical and Electronics Engineers)
Place of PublicationUnited States
ISSN1041-4347
1558-2191
Digital Object Identifier (DOI)https://doi.org/10.1109/TKDE.2021.3125424
Web Address (URL)https://ieeexplore.ieee.org/abstract/document/9606527
Abstract

Massive Open Online Courses (MOOCs) have received unprecedented attention, in which learners can obtain a large number of learning objects anytime and anywhere. However, the increasing information overload on MOOCs inhibits the appropriate choice of learning objects by learners, leading to a low efficiency and high dropout rates in the learning process of this human-computer interaction scenario. E-learning recommendation systems have been studied to present learning objects directly to learners, thereby relieving such problem. However, in MOOC platforms, recommendation network structures which can selectively extract implicit feature such as heterogeneous learning preference and knowledge organization of learning objects are still not comprehensively studied. To this end, we propose a learning object recommendation model based on heterogeneous learning behavior and knowledge graph. To generate a unified representation of each entity and relation, we first propose an Attentive Composition based Graph Convolutional Network (ACGCN). By introducing an attention mechanism, information is amplified when updating the representation of the heterogeneous graph, which eliminates the impact of noise and improves the robustness of the model. Then, a Dense Feature based Operation-Aware Network (DFOAN) is utilized to capture implicit and complex learners’ interactive behaviors, and to further provide a recommendation. Experimental results using two real-world datasets revealed that our proposed model has the best precision, recall, F1, and accuracy scores compared to those of several existing models.

KeywordsLearning objects recommendation; heterogeneous graph; graph convolutional network; attentive neural network
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 20204602. Artificial intelligence
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsBeijing Institute of Technology, China
Xi'an Jiaotong University, China
Chinese Academy of Sciences, China
University of Technology Sydney
University of Dar es Salaam, Tanzania
Beijing University of Civil Engineering and Architecture, China
University of Pittsburgh, United States
Permalink -

https://research.usq.edu.au/item/1009zz/recommending-learning-objects-through-attentive-heterogeneous-graph-convolution-and-operation-aware-neural-network

  • 75
    total views
  • 0
    total downloads
  • 56
    views this month
  • 0
    downloads this month

Export as

Related outputs

Deep Graph Clustering With Triple Fusion Mechanism for Community Detection
Ma, Yuanchi, Shi, Kaize, Peng, Xueping, He, Hui, Zhang, Peng, Liu, Jinyan, Lei, Zhongxiang and Niu, Zhendong. 2025. "Deep Graph Clustering With Triple Fusion Mechanism for Community Detection." IEEE Transactions on Computational Social Systems. 12 (4), pp. 1743-1758. https://doi.org/10.1109/TCSS.2024.3478351
Recommending Learning Objects through Attentive Heterogeneous Graph Convolution and Operation- Aware Neural Network (Extended Abstract)
Zhu, Yifan, Lin, Qika, Lu, Hao, Shi, Kaize, Liu, Donglei, Chambua, James, Wang, Shanshan and Niu, Zhendong. 2024. "Recommending Learning Objects through Attentive Heterogeneous Graph Convolution and Operation- Aware Neural Network (Extended Abstract)." 2024 IEEE 40th International Conference on Data Engineering (ICDE). Utrecht, Netherlands 13 - 14 May 2024 United States. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/ICDE60146.2024.00505
Deep coupling network for multivariate time series forecasting
Yi, Kun, Zhang, Qi, He, Hui, Hui He, Hu, Liang, An, Ning and Niu, Zhendong. 2024. "Deep coupling network for multivariate time series forecasting." ACM Transactions on Information Systems. 42 (5), pp. 1-28. https://doi.org/10.1145/3653447
Adapting GNNs for document understanding: A flexible framework with multiview global graphs
Wu, Zhuojia, Zhang, Qi, Miao, Duoqian, Zhao, Xuerong and Shi, Kaize. 2024. "Adapting GNNs for document understanding: A flexible framework with multiview global graphs." IEEE Transactions on Computational Social Systems. 12 (2), pp. 608-621. https://doi.org/10.1109/TCSS.2024.3468890
Enhancing Academic Title Drafting Through Abstractive Summarization
Wu, Taoyu Wu and Shi, Kaize. 2024. "Enhancing Academic Title Drafting Through Abstractive Summarization." 2024 IEEE International Conference on Behavioural and Social Computing (BESC-2024). Harbin, China 16 - 18 Aug 2024 China. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/BESC64747.2024.10780612
FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification
Liang, Yu, Zhang, Chenlong, An, Shan, Wang, Zaitian, Shi, Kaize, Peng, Tianhao, Ma, Yuqing, Xie, Xiaoyang, He, Jian and Zheng, Kun. 2024. "FetchEEG: a hybrid approach combining feature extraction and temporal-channel joint attention for EEG-based emotion classification." Journal of Neural Engineering. 21 (3). https://doi.org/10.1088/1741-2552/ad4743
A topic‐controllable keywords‐to‐text generator with knowledge base network
He, Li, Shi, Kaize, Wang, Dingxian, Wang, Xianzhi and Xu, Guandong. 2024. "A topic‐controllable keywords‐to‐text generator with knowledge base network." CAAI Transactions on Intelligence Technology. 9 (3), pp. 585-594. https://doi.org/10.1049/cit2.12280
Distributional drift adaptation with temporal conditional variational autoencoder for multivariate time series forecasting
He, Hui, Zhang, Qi, Yi, Kun, Shi, Kaize, Niu, Zhendong and Cao, Longbing. 2024. "Distributional drift adaptation with temporal conditional variational autoencoder for multivariate time series forecasting." IEEE Transactions on Neural Networks and Learning Systems. 36 (4), pp. 7287-7301. https://doi.org/10.1109/TNNLS.2024.3384842
Homogeneous-listing-augmented Self-supervised Multimodal Product Title Refinement
Deng, Jiaqi, Shi, Kaize, Huo, Huan, Wang, Dingxian and Xu, Guandong. 2024. "Homogeneous-listing-augmented Self-supervised Multimodal Product Title Refinement." 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24). Washington DC, United States 14 - 18 Jul 2024 United States. Association for Computing Machinery (ACM). https://doi.org/10.1145/3626772.3661347
PEDOT Counterions Enabled Oriented Polyaniline Nanorods for High Performance Flexible Supercapacitors
Jin, Yingzhi, Li, Zongyu, Huang, Sanqing, Ning, Weihua, Yang, Xiaoming, Liu, Yanfeng, Su, Zhen, Song, Jiaxing, Hu, Lin, Yin, XinXing, Lu, Hao, Zuilhof, Han, Wang, Hao and Li, Zaifang. 2024. "PEDOT Counterions Enabled Oriented Polyaniline Nanorods for High Performance Flexible Supercapacitors." Colloids and Surfaces A: Physicochemical and Engineering Aspects. 697. https://doi.org/10.1016/j.colsurfa.2024.134461
AMR-TST: Abstract Meaning Representation-based Text Style Transfer
Shi, Kaize, Sun, Xueyao, He, Li, Wang, Dingxian, Li, Qing and Xu, Guandong. 2023. "AMR-TST: Abstract Meaning Representation-based Text Style Transfer." Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada 09 - 14 Jul 2023 Canada.
Multiple knowledge-enhanced meteorological social briefing generation
Shi, Kaize, Peng, Xueping, Lu, Hao, Zhu, Yifan and Niu, Zhendong. 2023. "Multiple knowledge-enhanced meteorological social briefing generation." IEEE Transactions on Computational Social Systems. 11 (2), pp. 2002-2013. https://doi.org/10.1109/TCSS.2023.3298252
MTSTI: A multi-task learning framework for spatiotemporal imputation
Chen, Yakun, Shi, Kaize, Wang, Xianzhi and Xu, Guandong. 2023. "MTSTI: A multi-task learning framework for spatiotemporal imputation." 19th International Conference on Advanced Data Mining and Applications (ADMA'23). Shenyang, China 21 - 23 Aug 2023 Switzerland. Springer. https://doi.org/10.1007/978-3-031-46677-9_13
Application of social sensors in natural disasters emergency management: A review
Shi, Kaize, Peng, Xueping, Lu, Hao, Zhu, Yifan and Niu, Zhendong. 2022. "Application of social sensors in natural disasters emergency management: A review." IEEE Transactions on Computational Social Systems. 10 (6), pp. 3143-3158. https://doi.org/10.1109/TCSS.2022.3211552
Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit
Wang, Songhu, Wu, Dong-Hong, Addison, Brett C., Laughlin, Gregory, Liu, Hui-Gen, Wang, Yong-Hao, Yang, Taozhi, Yang, Ming, Yisikandeer, Abudusaimaitijiang, Hong, Renquan, Li, Bin, Liu, Jinzhong, Zhao, Haibin, Wu, Zhen-Yu, Hu, Shao-Ming, Zhou, Xu, Zhou, Ji-Lin, Zhang, Hui, Zheng, Jie, ..., Guo, Di-Fu. 2018. "Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit." The Astronomical Journal. 155 (2), pp. 1-7. https://doi.org/10.3847/1538-3881/aaa253
Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks
Zhu, Yifan, Lin, Qika, Lu, Hao, Shi, Kaize, Qiu, Ping and Niu, Zhendong. 2021. "Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks." Knowledge-Based Systems. 215. https://doi.org/10.1016/j.knosys.2021.106744
Position-aware stepwise tagging method for triples extraction of entity-relationship
Wang, Yuan, Shi, Kaize and Niu, Zhendong. 2021. "Position-aware stepwise tagging method for triples extraction of entity-relationship." Data Analysis and Knowledge Discovery. 5 (10), pp. 71-80. https://doi.org/10.11925/infotech.2096-3467.2021.0302
EKGTF: A knowledge-enhanced model for optimizing social network-based meteorological briefings
Shi, Kaize, Wang, Yusen, Lu, Hao, Zhu, Yifan and Niu, Zhendong. 2021. "EKGTF: A knowledge-enhanced model for optimizing social network-based meteorological briefings." Information Processing and Management. 58 (4). https://doi.org/10.1016/j.ipm.2021.102564
Social signal-driven knowledge automation: A focus on social transportation
Lu, Hao, Zhu, Yifan, Yuan, Yong, Gong, Weichao, Li, Juanjuan, Shi, Kaize, Lv, Yisheng, Niu, Zhendong and Wang, Fei-Yue. 2021. "Social signal-driven knowledge automation: A focus on social transportation." IEEE Transactions on Computational Social Systems. 8 (3), pp. 737-753. https://doi.org/10.1109/TCSS.2021.3057332
Improving university faculty evaluations via multi-view knowledge graph
Lin, Qika, Zhu, Yifan, Lu, Hao, Shi, Kaize and Niu, Zhendong. 2021. "Improving university faculty evaluations via multi-view knowledge graph." Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications. 117, pp. 181-192. https://doi.org/10.1016/j.future.2020.11.021
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace
Zhu, Yifan, Zhang, Sifan, Li, Yinan, Lu, Hao, Shi, Kaize and Niu, Zhendong. 2020. "Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace." Geoscience Data Journal. 7 (1), pp. 61-79. https://doi.org/10.1002/gdj3.85
Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization
Zhu, Yifan, Lu, Hao, Qiu, Ping, Shi, Kaize, Chambua, James and Niu, Zhendong. 2020. "Heterogeneous teaching evaluation network based offline course recommendation with graph learning and tensor factorization." Neurocomputing. 415, pp. 84-95. https://doi.org/10.1016/j.neucom.2020.07.064
A Session-based Job Recommendation System Combining Area Knowledge and Interest Graph Neural Networks
Wang, Yusen, Shi, Kaize and Niu, Zhendong. 2020. "A Session-based Job Recommendation System Combining Area Knowledge and Interest Graph Neural Networks." 32nd International Conference on Software Engineering and Knowledge Engineering (SEKE 2020). Pittsburgh, United States 09 - 11 Jul 2020 United States. Knowledge Systems Institute.
Automatic generation of meteorological briefing by event knowledge guided summarization model
Shi, Kaize, Lu, Hao, Zhu, Yifan and Niu, Zhendong. 2020. "Automatic generation of meteorological briefing by event knowledge guided summarization model." Knowledge-Based Systems. 192. https://doi.org/10.1016/j.knosys.2019.105379
Wide-grained capsule network with sentence-level feature to detect meteorological event in social network
Shi, Kaize, Gong, Changjin, Lu, Hao, Zhu, Yifan and Niu, Zhendong. 2020. "Wide-grained capsule network with sentence-level feature to detect meteorological event in social network." Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications. 102, pp. 323-332. https://doi.org/10.1016/j.future.2019.08.013
Electrocapacitive properties of nitrogen-containing porous carbon derived from cellulose
Lu, Hao, Sun, Xiaoming, Gaddam, Rohit R., Kumar, Nanjundan A. and Zhao, X. S.. 2017. "Electrocapacitive properties of nitrogen-containing porous carbon derived from cellulose." Journal of Power Sources. 360, pp. 634-641. https://doi.org/10.1016/j.jpowsour.2017.05.109