2001 QR322: a dynamically unstable Neptune Trojan?
Article
Article Title | 2001 QR322: a dynamically unstable Neptune Trojan? |
---|---|
ERA Journal ID | 1074 |
Article Category | Article |
Authors | Horner, J. (Author) and Lykawka, P. S. (Author) |
Journal Title | Monthly Notices of the Royal Astronomical Society |
Journal Citation | 405 (1), pp. 49-56 |
Number of Pages | 8 |
Year | 2010 |
Publisher | Oxford University Press |
Place of Publication | United Kingdom |
ISSN | 0035-8711 |
1365-2966 | |
Digital Object Identifier (DOI) | https://doi.org/10.1111/j.1365-2966.2010.16441.x |
Web Address (URL) | https://academic.oup.com/mnras/article/405/1/49/1020442 |
Abstract | Since early work on the stability of the first Neptunian Trojan, 2001 QR322, suggested that it was a dynamically stable, primordial body, it has been assumed that this applies to both that object and its more recently discovered brethren. However, it seems that things are no longer so clear-cut. In this work, we present the results of detailed dynamical simulations of the orbital behaviour of 2001 QR322. Using an ephemeris for the object that has significantly improved since earlier works, we follow the evolution of 19683 test particles, placed on orbits within the observational error ellipse of 2001 QR322's orbit, for a period of 1Gyr. We find that majority of these `clones' of 2001 QR322 are dynamically unstable, exhibiting a near-exponential decay from both the Neptunian Trojan cloud (decay half-life of ~550Myr) and the Solar system (decay half-life of ~590Myr). The stability of the object within Neptune's Trojan cloud is found to be strongly dependent on the initial semi major axis used, with these objects located at a >= 30.30au being significantly less stable than those interior to this value, as a result of their having initial libration amplitudes very close to a critical threshold dividing regular and irregular motion, located at ~70°-75° (full extent of angular motion). This result suggests that if 2001 QR322 is a primordial Neptunian Trojan, it must be a representative of a population that was once significantly larger than that we see today and adds weight to the idea that the Neptune Trojans may represent a significant source of objects moving on unstable orbits between the giant planets (the Centaurs). |
Keywords | N-body simulations; celestial mechanics; Kuiper Belt; minor planets; asteroids; solar system formation |
ANZSRC Field of Research 2020 | 510109. Stellar astronomy and planetary systems |
519999. Other physical sciences not elsewhere classified | |
510101. Astrobiology | |
Public Notes | This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2010 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. |
Byline Affiliations | Open University, United Kingdom |
Kindai University, Japan | |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q27y0/2001-qr322-a-dynamically-unstable-neptune-trojan
Download files
1641
total views121
total downloads0
views this month0
downloads this month