From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations

Article


Angstmann, C. N., Donnelly, I. C., Henry, B. I., Jacobs, B. A., Langlands, T. A. M. and Nichols, J. A.. 2016. "From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations." Journal of Computational Physics. 307, pp. 508-534. https://doi.org/10.1016/j.jcp.2015.11.053
Article Title

From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations

ERA Journal ID35103
Article CategoryArticle
AuthorsAngstmann, C. N. (Author), Donnelly, I. C. (Author), Henry, B. I. (Author), Jacobs, B. A. (Author), Langlands, T. A. M. (Author) and Nichols, J. A. (Author)
Journal TitleJournal of Computational Physics
Journal Citation307, pp. 508-534
Number of Pages27
Year2016
Place of PublicationNetherlands
ISSN0021-9991
1090-2716
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jcp.2015.11.053
Web Address (URL)http://www.sciencedirect.com/science/article/pii/S0021999115007937
Abstract

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

Keywordsfractional diffusion; fractional reaction diffusion; anomalous diffusion; continuous time random walk; discrete time random walk; finite difference method
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020490303. Numerical solution of differential and integral equations
490510. Stochastic analysis and modelling
Public Notes

File reproduced in accordance with the copyright policy of the publisher/author.

Byline AffiliationsUniversity of New South Wales
University of the Witwatersrand, South Africa
Computational Engineering and Science Research Centre
Institution of OriginUniversity of Southern Queensland
Funding source
Australian Research Council (ARC)
Grant ID
DP140101193
Permalink -

https://research.usq.edu.au/item/q33yv/from-stochastic-processes-to-numerical-methods-a-new-scheme-for-solving-reaction-subdiffusion-fractional-partial-differential-equations

Download files


Accepted Version
  • 1740
    total views
  • 305
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations
Osman, Sheelan and Langlands, Trevor. 2022. "Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations." Fractional Calculus and Applied Analysis. 25 (6), pp. 2166-2192. https://doi.org/10.1007/s13540-022-00096-2
Connecting community online and through partnership: A reflective piece
Pickstone, Leigh, Sharma, Ekta, King, Rachel, Galligan, Linda and Langlands, Trevor. 2022. "Connecting community online and through partnership: A reflective piece." International Journal for Students as Partners. 6 (2), pp. 114-120. https://doi.org/10.15173/ijsap.v6i2.4825
Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses
Deo, Ravinesh C., Yaseen, Zaher Mundher, Al-Ansari, Nadhir, Nguyen-Huy, Thong, Langlands, Trevor and Galligan, Linda. 2020. "Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses." IEEE Access. 8, pp. 136697-136724. https://doi.org/10.1109/ACCESS.2020.3010938
An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations
Osman, S. A and Langlands, T. A. M.. 2019. "An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations." Applied Mathematics and Computation. 348, pp. 609-626. https://doi.org/10.1016/j.amc.2018.12.015
Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
Langlands, Trevor, Henry, B. I. and Wearne, S. L.. 2009. "Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions." Journal of Mathematical Biology. 59 (6), pp. 761-808. https://doi.org/10.1007/s00285-009-0251-1
A mathematical model for the proliferation, accumulation and spread of pathogenic proteins along neuronal pathways with locally anomalous trapping
Angstmann, C. N., Donnelly, I. C., Henry, B. I. and Langlands, T. A. M.. 2016. "A mathematical model for the proliferation, accumulation and spread of pathogenic proteins along neuronal pathways with locally anomalous trapping." Mathematical Modelling of Natural Phenomena (MMNP). 11 (3), pp. 142-156. https://doi.org/10.1051/mmnp/20161139
Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations
Angstmann, C. N., Donnelly, I. C., Henry, B. I., Langlands, T. A. M. and Straka, P.. 2015. "Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations." SIAM Journal on Applied Mathematics. 75 (4), pp. 1445-1468. https://doi.org/10.1137/15M1011299
Continuous-time random walks on networks with vertex- and time-dependent forcing
Angstmann, C. N., Donnelly, I. C., Henry, B. I. and Langlands, T. A. M.. 2013. "Continuous-time random walks on networks with vertex- and time-dependent forcing." Physical Review E. 88 (2). https://doi.org/10.1103/PhysRevE.88.022811
Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions
Langlands, T. A. M., Henry, B. I. and Wearne, S. L.. 2011. "Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions." SIAM Journal on Applied Mathematics. 71 (4), pp. 1168-1203. https://doi.org/10.1137/090775920
Fractional diffusion in force fields, fractional electro-diffusion and fractional chemotaxis diffusion
Langlands, Trevor, Henry, Bruce and Straka, Peter. 2010. "Fractional diffusion in force fields, fractional electro-diffusion and fractional chemotaxis diffusion." Henry, Bruce and Roberts, John (ed.) Dynamics Days Asia Pacific 6 Conference (DDAP6). Sydney, Australia 12 - 14 Jul 2010 Sydney, Australia.
Anomalous subdiffusion with multispecies linear reaction dynamics
Langlands, Trevor, Henry, B. I. and Wearne, S. L.. 2008. "Anomalous subdiffusion with multispecies linear reaction dynamics." Physical Review B: Covering condensed matter and materials physics. 77, pp. 1-9. https://doi.org/10.1103/PhysRevE.77.021111
Fractional cable models for spiny neuronal dendrites
Henry, B. I., Langlands, Trevor and Wearne, S. L.. 2008. "Fractional cable models for spiny neuronal dendrites." Physical Review Letters. 100 (12), pp. 1-4. https://doi.org/10.1103/PhysRevLett.100.128103
Turing pattern formation with fractional diffusion and fractional reactions
Langlands, T. A. M., Henry, B. I. and Wearne, S. L.. 2006. "Turing pattern formation with fractional diffusion and fractional reactions." Journal of Physics: Condensed Matter. 19 (6), pp. 065115 -065134. https://doi.org/10.1088/0953-8984/19/6/065115
Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations
Henry, B. I., Langlands, Trevor and Wearne, S. L.. 2006. "Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations." Physical Review E. 74 (3), pp. 1-15. https://doi.org/10.1103/PhysRevE.74.031116
Solution of a modified fractional diffusion equation
Langlands, T. A. M.. 2006. "Solution of a modified fractional diffusion equation." Physica A: Statistical Mechanics and its Applications. 367, pp. 136-144. https://doi.org/10.1016/j.physa.2005.12.012
Fractional Fokker-Planck equations for subdiffusion with space-and time-dependent forces
Henry, B. I., Langlands, T. A. M. and Straka, P.. 2010. "Fractional Fokker-Planck equations for subdiffusion with space-and time-dependent forces." Physical Review Letters. 105 (17), pp. 17062-1-170602-4. https://doi.org/10.1103/PhysRevLett.105.170602
Fractional chemotaxis diffusion equations
Langlands, T. A. M. and Henry, B. I.. 2010. "Fractional chemotaxis diffusion equations." Physical Review E. 81 (5), pp. 1-12. https://doi.org/10.1103/PhysRevE.81.051102
Optimal targeting of hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs
Zeiler, Irmgard, Langlands, Trevor, Murray, John M. and Ritter, Alison. 2010. "Optimal targeting of hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs." Drug and Alcohol Dependence. 110 (3), pp. 228-233. https://doi.org/10.1016/j.drugalcdep.2010.03.006
An introduction to fractional diffusion
Henry, B. I., Langlands, Trevor and Straka, P.. 2010. "An introduction to fractional diffusion." Dewar, Robert L. and Detering, Frank (ed.) 22nd Canberra International Physics Summer School. Canberra, Australia 08 - 19 Dec 2008 Singapore. https://doi.org/10.1142/9789814277327_0002