A mathematical model for the proliferation, accumulation and spread of pathogenic proteins along neuronal pathways with locally anomalous trapping

Article


Angstmann, C. N., Donnelly, I. C., Henry, B. I. and Langlands, T. A. M.. 2016. "A mathematical model for the proliferation, accumulation and spread of pathogenic proteins along neuronal pathways with locally anomalous trapping." Mathematical Modelling of Natural Phenomena (MMNP). 11 (3), pp. 142-156. https://doi.org/10.1051/mmnp/20161139
Article Title

A mathematical model for the proliferation, accumulation and spread of pathogenic proteins along neuronal pathways with locally anomalous trapping

ERA Journal ID32402
Article CategoryArticle
AuthorsAngstmann, C. N. (Author), Donnelly, I. C. (Author), Henry, B. I. (Author) and Langlands, T. A. M. (Author)
Journal TitleMathematical Modelling of Natural Phenomena (MMNP)
Journal Citation11 (3), pp. 142-156
Number of Pages15
Year2016
Place of PublicationFrance
ISSN0973-5348
1760-6101
Digital Object Identifier (DOI)https://doi.org/10.1051/mmnp/20161139
Web Address (URL)https://www.mmnp-journal.org/articles/mmnp/abs/2016/03/mmnp2016113p142/mmnp2016113p142.html
Abstract

There is growing evidence that many neurodegenerative disease processes involve the proliferation, accumulation and spread of pathogenic proteins. The transport of proteins in the brain is typically hindered on small scales by micro-domain traps and binding sites but it may be enhanced on larger scales by neuronal pathways identified as white matter transport networks. We have introduced a mathematical network model to simulate a pathogenic protein neurodegenerative disease in the brain taking into account the anomalous transport. The proliferation and accumulation of pathogenic proteins is modelled using a set of reaction kinetics equations on the nodes of a network. Transport of the proteins on the network is modelled as a continuous time random walk with power law distributed waiting times on the nodes. This power law waiting time distribution is shown to be consistent with anomalously slowed diffusion on local scales but transport is enhanced on larger scales by the jumps between nodes. The model reveals that the disease spreads as a propagating front throughout the brain. The anomalous behaviour leads to a lessor variation in the concentration of pathogenic proteins. The enhanced transport on the network ensures that the approach to equilibrium is dominated by the short time behaviour of the waiting time density, hence the effects of subdiffusion are not as pronounced as in a spatial continuum.

Keywordsanomalous transport, fractional diffusion, prion disease
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020490303. Numerical solution of differential and integral equations
490102. Biological mathematics
Public Notes

File reproduced in accordance with the copyright policy of the publisher/author.

Byline AffiliationsUniversity of New South Wales
Computational Engineering and Science Research Centre
Institution of OriginUniversity of Southern Queensland
Funding source
Australian Research Council (ARC)
Grant ID
DP140101193
Permalink -

https://research.usq.edu.au/item/q38x9/a-mathematical-model-for-the-proliferation-accumulation-and-spread-of-pathogenic-proteins-along-neuronal-pathways-with-locally-anomalous-trapping

Download files


Published Version
  • 1772
    total views
  • 43
    total downloads
  • 3
    views this month
  • 1
    downloads this month

Export as

Related outputs

Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations
Osman, Sheelan and Langlands, Trevor. 2022. "Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations." Fractional Calculus and Applied Analysis. 25 (6), pp. 2166-2192. https://doi.org/10.1007/s13540-022-00096-2
Connecting community online and through partnership: A reflective piece
Pickstone, Leigh, Sharma, Ekta, King, Rachel, Galligan, Linda and Langlands, Trevor. 2022. "Connecting community online and through partnership: A reflective piece." International Journal for Students as Partners. 6 (2), pp. 114-120. https://doi.org/10.15173/ijsap.v6i2.4825
Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses
Deo, Ravinesh C., Yaseen, Zaher Mundher, Al-Ansari, Nadhir, Nguyen-Huy, Thong, Langlands, Trevor and Galligan, Linda. 2020. "Modern artificial intelligence model development for undergraduate student performance prediction: an investigation on engineering mathematics courses." IEEE Access. 8, pp. 136697-136724. https://doi.org/10.1109/ACCESS.2020.3010938
An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations
Osman, S. A and Langlands, T. A. M.. 2019. "An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations." Applied Mathematics and Computation. 348, pp. 609-626. https://doi.org/10.1016/j.amc.2018.12.015
From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations
Angstmann, C. N., Donnelly, I. C., Henry, B. I., Jacobs, B. A., Langlands, T. A. M. and Nichols, J. A.. 2016. "From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations." Journal of Computational Physics. 307, pp. 508-534. https://doi.org/10.1016/j.jcp.2015.11.053
Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
Langlands, Trevor, Henry, B. I. and Wearne, S. L.. 2009. "Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions." Journal of Mathematical Biology. 59 (6), pp. 761-808. https://doi.org/10.1007/s00285-009-0251-1
Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations
Angstmann, C. N., Donnelly, I. C., Henry, B. I., Langlands, T. A. M. and Straka, P.. 2015. "Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations." SIAM Journal on Applied Mathematics. 75 (4), pp. 1445-1468. https://doi.org/10.1137/15M1011299
Continuous-time random walks on networks with vertex- and time-dependent forcing
Angstmann, C. N., Donnelly, I. C., Henry, B. I. and Langlands, T. A. M.. 2013. "Continuous-time random walks on networks with vertex- and time-dependent forcing." Physical Review E. 88 (2). https://doi.org/10.1103/PhysRevE.88.022811
Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions
Langlands, T. A. M., Henry, B. I. and Wearne, S. L.. 2011. "Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions." SIAM Journal on Applied Mathematics. 71 (4), pp. 1168-1203. https://doi.org/10.1137/090775920
Fractional diffusion in force fields, fractional electro-diffusion and fractional chemotaxis diffusion
Langlands, Trevor, Henry, Bruce and Straka, Peter. 2010. "Fractional diffusion in force fields, fractional electro-diffusion and fractional chemotaxis diffusion." Henry, Bruce and Roberts, John (ed.) Dynamics Days Asia Pacific 6 Conference (DDAP6). Sydney, Australia 12 - 14 Jul 2010 Sydney, Australia.
Anomalous subdiffusion with multispecies linear reaction dynamics
Langlands, Trevor, Henry, B. I. and Wearne, S. L.. 2008. "Anomalous subdiffusion with multispecies linear reaction dynamics." Physical Review B: Covering condensed matter and materials physics. 77, pp. 1-9. https://doi.org/10.1103/PhysRevE.77.021111
Fractional cable models for spiny neuronal dendrites
Henry, B. I., Langlands, Trevor and Wearne, S. L.. 2008. "Fractional cable models for spiny neuronal dendrites." Physical Review Letters. 100 (12), pp. 1-4. https://doi.org/10.1103/PhysRevLett.100.128103
Turing pattern formation with fractional diffusion and fractional reactions
Langlands, T. A. M., Henry, B. I. and Wearne, S. L.. 2006. "Turing pattern formation with fractional diffusion and fractional reactions." Journal of Physics: Condensed Matter. 19 (6), pp. 065115 -065134. https://doi.org/10.1088/0953-8984/19/6/065115
Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations
Henry, B. I., Langlands, Trevor and Wearne, S. L.. 2006. "Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations." Physical Review E. 74 (3), pp. 1-15. https://doi.org/10.1103/PhysRevE.74.031116
Solution of a modified fractional diffusion equation
Langlands, T. A. M.. 2006. "Solution of a modified fractional diffusion equation." Physica A: Statistical Mechanics and its Applications. 367, pp. 136-144. https://doi.org/10.1016/j.physa.2005.12.012
Fractional Fokker-Planck equations for subdiffusion with space-and time-dependent forces
Henry, B. I., Langlands, T. A. M. and Straka, P.. 2010. "Fractional Fokker-Planck equations for subdiffusion with space-and time-dependent forces." Physical Review Letters. 105 (17), pp. 17062-1-170602-4. https://doi.org/10.1103/PhysRevLett.105.170602
Fractional chemotaxis diffusion equations
Langlands, T. A. M. and Henry, B. I.. 2010. "Fractional chemotaxis diffusion equations." Physical Review E. 81 (5), pp. 1-12. https://doi.org/10.1103/PhysRevE.81.051102
Optimal targeting of hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs
Zeiler, Irmgard, Langlands, Trevor, Murray, John M. and Ritter, Alison. 2010. "Optimal targeting of hepatitis C virus treatment among injecting drug users to those not enrolled in methadone maintenance programs." Drug and Alcohol Dependence. 110 (3), pp. 228-233. https://doi.org/10.1016/j.drugalcdep.2010.03.006
An introduction to fractional diffusion
Henry, B. I., Langlands, Trevor and Straka, P.. 2010. "An introduction to fractional diffusion." Dewar, Robert L. and Detering, Frank (ed.) 22nd Canberra International Physics Summer School. Canberra, Australia 08 - 19 Dec 2008 Singapore. https://doi.org/10.1142/9789814277327_0002