Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils

PhD Thesis


Kumarathilaka, Prasanna. 2020. Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils. PhD Thesis Doctor of Philosophy. University of Southern Queensland. https://doi.org/10.26192/P8BG-FK83
Title

Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils

TypePhD Thesis
Authors
AuthorKumarathilaka, Prasanna
SupervisorBundschuh, Jochen
Seneweera, Saman
Meharg, Andrew
Sik, Yong
Marchuk, Alla
Institution of OriginUniversity of Southern Queensland
Qualification NameDoctor of Philosophy
Number of Pages240
Year2020
Digital Object Identifier (DOI)https://doi.org/10.26192/P8BG-FK83
Abstract

Rice (Oryza sativa L.) is the main staple carbohydrate source for more than 50% of the world’s population. Rice production needs to be increased by 70% by 2030 to meet the demand of an ever-increasing population worldwide. It is reported that millions of people around the world are at risk of health problems because of ingestion of arsenic (As) through rice consumption. The application of pristine/modified biochar (BC) would be a sustainable way of improving rice yield and decreasing the bioavailability of As in the rice rhizosphere. Taking these facts into account, this PhD investigated, for the first time, the integrated effects of pristine/modified BC-water management approaches (flooded and intermittent) on plant growth parameters and As phyto-availability in As-contaminated paddy rice soils with respect to potential mechanisms. In the first phase, the effects of pristine rice hull BC supplementation to As-contaminated paddy soils under different water management practices were investigated. The incorporation of rice hull BC to As-contaminated paddy soils has increased rice yield by 11%-19% in rice hull BC-intermittent and -flooded treatments compared to the conventional flooded treatment. Inorganic As concentration in rice roots, shoots, husks, and unpolished rice grains and abundance of Fe(III) reducing bacteria in the rice rhizosphere decreased by 10%-83% and 40-70%, respectively, in rice hull BC-flooded, -intermittent, and intermittent treatments compared to the conventional flooded treatment. Concentrations of essential elements such as Fe, Mn, Zn, Mg, and Ca in unpolished rice grains increased by 45%-329% in rice hull BC-flooded and -intermittent treatments compared to flooded treatment. The steady release of Si, SO and essential elements and the adsorption of As species, following the incorporation of rice hull BC in paddy soils could contribute to a decreased As accumulation in rice tissues, while increasing the concentration of essential elements in unpolished rice grains. In the second phase, the effects of birnessite modified rice hull BC supplementation to As-contaminated paddy soils under different water management practices were evaluated. Rice yield in both selected rice varieties (Jayanthi and Ishikari) increased by 10%-34% under birnessite modified rice hull BC-flooded and birnessite modified rice hull BC-intermittent treatments compared to the conventional flooded treatment.

In most cases, inorganic As concentration in rice roots, shoots, husks, and unpolished grains in both rice varieties was significantly (p ≤ 0.05) decreased by 20% - 81%, 6% - 81%, 30% - 75%, and 18% - 44%, respectively, under birnessite modified rice hull BC-flooded, birnessite modified rice hull BC-intermittent, and intermittent treatments over flooded treatment. Incremental lifetime cancer risks associated with consumption of both rice varieties were also decreased from 18% to 44% under birnessite modified rice hull BC-flooded, birnessite modified rice hull BC-intermittent, and intermittent treatments compared to the conventional flooded treatment. Formation of Mn plaque on rice roots, physi- and chemisorption of As species to birnessite modified rice hull BC, following the supplementation of birnessite modified rice hull BC in As-contaminated paddy soils could involve the reduction of bioavailability of As species in the rice rhizosphere. In the third phase, the effects of Fe-modified rice hull BC addition to As-contaminated paddy soils under different water management practices were examined. Compared to conventional flooded water management, rice yield per pot under Fe-modified rice hull BC-intermittent and Fe-modified rice hull BC-flooded treatments increased by 24%-39%. The supplementation of Fe-modified rice hull BC has decreased the As/Fe ratio and the abundance of Fe(III) reducing bacteria by 57%-88% and 24%-64%, respectively, in Fe-modified rice hull BC-flooded and Fe-modified rice hull BC-RBC-intermittent treatments compared to the conventional flooded treatment. Fe-modified rice hull BC-intermittent treatment has also significantly (p ≤ 0.05) reduced the accumulation of As in rice roots, shoots, husks, and unpolished rice grains by 62%, 37%, 79%, and 59%, respectively, compared to the conventional flooded treatment. The steady release of Si and Fe to paddy pore water, promoting Fe plaque formation, adsorption of As species onto Fe-modified rice hull BC could contribute to a decreased As accumulation in rice tissues under Fe-modified rice hull BC-intermittent treatment compared to other treatments. Overall, this PhD research paves the way to a sustainable-integrated approach of pristine/modified rice hull BC-intermittent water supply management strategy that can be adapted for rice grown in As-contaminated paddy rice soils. The results of this approach would be to improve the quality of rice, to increase rice yield for the demand of ever-increasing populations worldwide.

KeywordsRice, Arsenic, Biochar, Water management, Rice yield
ANZSRC Field of Research 2020401102. Environmentally sustainable engineering
410404. Environmental management
Byline AffiliationsSchool of Mechanical and Electrical Engineering
Permalink -

https://research.usq.edu.au/item/q6609/combined-effects-of-the-biochar-biochar-composites-and-water-management-strategies-on-the-phyto-availability-of-arsenic-in-paddy-rice-soils

Download files


Published Version
  • 197
    total views
  • 288
    total downloads
  • 3
    views this month
  • 9
    downloads this month

Export as

Related outputs

Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman, Marchuk, Alla and Ok, Yong Sik. 2021. "Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)." Environmental Pollution. 286, pp. 1-10. https://doi.org/10.1016/j.envpol.2021.117661
Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications." Science of the Total Environment. 768, pp. 1-9. https://doi.org/10.1016/j.scitotenv.2020.144531
An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice." Journal of Hazardous Materials. 405, pp. 1-9. https://doi.org/10.1016/j.jhazmat.2020.124188
A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches
Herath, Indika, Kumarathilaka, Prasanna, Bundschuh, Jochen, Marchuk, Alla and Rinklebe, Jorg. 2020. "A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches." Talanta. 208, pp. 1-13. https://doi.org/10.1016/j.talanta.2019.120457
Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review
Vithanage, Meththika, Kumarathilaka, Prasanna, Oze, Christopher, Karunatilake, Suniti, Seneviratne, Mihiri, Hseu, Zeng-Yei, Gunarathne, Viraj, Dassanayake, Maheshi, Ok, Yong Sik and Rinklebe, Jörg. 2019. "Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review." Environment International. 131 (104974), pp. 1-17. https://doi.org/10.1016/j.envint.2019.104974
Characteristics of Particulate Plastics in Terrestrial Ecosystems
Palansooriya, K. N., Wijesekara, H., Bradney, L., Kumarathilaka, P., Bundschuh, J., Bolan, N. and Ok, Y. S.. 2020. "Characteristics of Particulate Plastics in Terrestrial Ecosystems." Sustainable Waste Management Workshop: Microplastics in the Environment 2020. Singapore 07 - 09 Jan 2020 United States. American Institute of Chemical Engineers. pp. 6
Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew A. and Bundschuh, Jochen. 2020. "Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review." Critical Reviews in Environmental Science and Technology. 50 (1), pp. 31-71. https://doi.org/10.1080/10643389.2019.1618691
Arsenic in cooked rice foods: assessing health risks and mitigation options
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew and Bundschuh, Jochen. 2019. "Arsenic in cooked rice foods: assessing health risks and mitigation options." Environment International. 127, pp. 584-591. https://doi.org/10.1016/j.envint.2019.04.004
Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors." Science of the Total Environment. 642, pp. 485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review." Water Research. 140, pp. 403-414. https://doi.org/10.1016/j.watres.2018.04.034
Municipal solid waste-derived biochar for the removal of benzene from landfill leachate
Jayawardhana, Yohan, Mayakaduwa, S. S., Kumarathilaka, Prasanna, Gamage, Sewwandi and Vithanage, Meththika. 2019. "Municipal solid waste-derived biochar for the removal of benzene from landfill leachate." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 41 (4), pp. 1739-1753. https://doi.org/10.1007/s10653-017-9973-y
Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)
Kumarathilaka, P., Bundschuh, J., Seneweera, S. and Meharg, A. A.. 2018. "Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)." 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018). Beijing, China 01 - 06 Jul 2018 Netherlands. CRC Press. pp. 289-290 https://doi.org/10.1201/9781351046633-113
Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil
Kumarathilaka, Prasanna, Ahmad, Mahtab, Herath, Indika, Mahatantila, Kushani, Athapattu, B. C. L., Rinklebe, Jörg, Ok, Yong Sik, Usman, Adel, Al-Wabel, Mohammad I., Abduljabbar, Adel and Vithanage, Meththika. 2018. "Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil." Science of the Total Environment. 625, pp. 547-554. https://doi.org/10.1016/j.scitotenv.2017.12.294
Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil
Kumarathilaka, Prasanna and Vithanage, Meththika. 2017. "Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil." Journal of Chemistry. 2017, pp. 1-9. https://doi.org/10.1155/2017/6180636
Phytoremediation of Landfill Leachates
Kumarathilaka, Prasanna, Wijesekara, Hasintha, Bolan, Nanthi, Kunhikrishnan, Anitha and Vithanage, Meththika. 2017. "Phytoremediation of Landfill Leachates." Ansari, Abid A., Gill, Sarvajeet Singh, Gill, Ritu, Lanza, Guy R. and Newman, Lee (ed.) Phytoremediation: Management of Environmental Contaminants. Switzerland. Springer. pp. 439-467
Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Seneviratne, Mihiri, Seneviratne, Gamini, Rajakaruna, Nishanta, Vithanage, Meththika and Ok, Yong Sik. 2017. "Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil." Journal of Soils and Sediments: protection, risk assessment and remediation. 17 (3), pp. 665-673. https://doi.org/10.1007/s11368-015-1243-y
Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Hseu, Zeng-Yei, Ok, Yong Sik and Vithanage, Meththika. 2017. "Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 39 (2), pp. 391-401. https://doi.org/10.1007/s10653-016-9842-0
Perchlorate as an emerging contaminant in soil, water and food
Kumarathilaka, Prasanna, Oze, Christopher, Indraratne, S. P. and Vithanage, Meththika. 2016. "Perchlorate as an emerging contaminant in soil, water and food ." Chemosphere. 150, pp. 667-677. https://doi.org/10.1016/j.chemosphere.2016.01.109
Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar
Herath, Indika, Kumarathilaka, Prasanna, Al-Wabel, Mohammad I., Abduljabbar, Adel, Ahmad, Mahtab, Usman, Adel R. A. and Vithanage, Meththika. 2016. "Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar." Microporous and Mesoporous Materials. 225, pp. 280-288. https://doi.org/10.1016/j.micromeso.2016.01.017
Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka
Vithanage, Meththika, Herath, Indika, Achinthya, S. S., Bandara, Tharanga, Weerasundara, Lakshika, Mayakaduwa, S.S., Jayawardhana, Yohan and Kumarathilaka, Prasanna. 2016. "Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka." Archives of Public Health. 74 (1), pp. 1-7. https://doi.org/10.1186/s13690-016-0133-0
Biosolids Enhance Mine Site Rehabilitation and Revegetation
Wijesekara, H., Bolan, N. S., Kumarathilaka, P., Geekiyanage, N., Kunhikrishnan, A., Seshadri, B., Saint, C., Surapaneni, A. and Vithanage, M.. 2016. "Biosolids Enhance Mine Site Rehabilitation and Revegetation." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 45-71
Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate
Jayawardhana, Y., Kumarathilaka, P., Herath, I. and Vithanage, M.. 2016. "Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 117-148
Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka
Kumarathilaka, Prasanna, Jayawardhana, Yohan, Basnayake, B. F. A., Mowjood, M. I. M., Nagamori, M., Saito, Takeshi, Kawamoto, Ken and Vithanage, Meththika. 2016. "Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka." Groundwater for Sustainable Development. 2-3, pp. 1-6. https://doi.org/10.1016/j.gsd.2016.04.001
Perchlorate mobilization of metals in serpentine soils
Kumarathilaka, Prasanna, Oze, Christopher and Vithanage, Meththika. 2016. "Perchlorate mobilization of metals in serpentine soils." Applied Geochemistry. 74, pp. 203-209. https://doi.org/10.1016/j.apgeochem.2016.10.009