Municipal solid waste-derived biochar for the removal of benzene from landfill leachate

Article


Jayawardhana, Yohan, Mayakaduwa, S. S., Kumarathilaka, Prasanna, Gamage, Sewwandi and Vithanage, Meththika. 2019. "Municipal solid waste-derived biochar for the removal of benzene from landfill leachate." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 41 (4), pp. 1739-1753. https://doi.org/10.1007/s10653-017-9973-y
Article Title

Municipal solid waste-derived biochar for the removal of benzene from landfill leachate

ERA Journal ID36373
Article CategoryArticle
AuthorsJayawardhana, Yohan, Mayakaduwa, S. S., Kumarathilaka, Prasanna, Gamage, Sewwandi and Vithanage, Meththika
Journal TitleEnvironmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health
Journal Citation41 (4), pp. 1739-1753
Number of Pages15
Year2019
PublisherSpringer
Place of PublicationNetherlands
ISSN0269-4042
1573-2983
Digital Object Identifier (DOI)https://doi.org/10.1007/s10653-017-9973-y
Web Address (URL)https://link.springer.com/article/10.1007/s10653-017-9973-y
Abstract

The potential of biochar, produced from fibrous organic fractions of municipal solid waste (MSW), for remediation of benzene, one of the frequently found toxic volatile organic compounds in landfill leachate, was investigated in this study based on various environmental conditions such as varying pH, benzene concentration, temperature and time. At the same time, landfill leachate quality parameters were assessed at two different dump sites in Sri Lanka: Gohagoda and Kurunegala. MSW biochar (MSW-BC) was produced by slow temperature pyrolysis at 450 °C, and the physiochemical characteristics of the MSW-BC were characterized. All the leachate samples from the MSW dump sites exceeded the World Health Organization permissible level for benzene (5 µg/L) in water. Removal of benzene was increased with increasing pH, with the highest removal observed at ~pH 9. The maximum adsorption capacity of 576 µg/g was reported at room temperature (~25 °C). Both Freundlich and Langmuir models fitted best with the equilibrium isotherm data, suggesting the involvement of both physisorption and chemisorption mechanisms. Thermodynamic data indicated the feasibility of benzene adsorption and its high favorability at higher temperatures. The values of Δ G suggested physical interactions between sorbate and sorbent, whereas kinetic data implied a significant contribution of chemisorption. Results obtained from FTIR provided clear evidence of the involvement of functional groups in biochar for benzene adsorption. This study suggests that MSW biochar could be a possible remedy for benzene removal from landfill leachate and at the same time MSW can be a potential source to produce biochar which acts as a prospective material to remediate its pollutants while reducing the volume of waste.

KeywordsChemisorption; Landfill leachate; Open dumps; Physisorption; Thermodynamic
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

FunderNational Research Council
Byline AffiliationsNational Institute of Fundamental Studies, Sri Lanka
South Eastern University of Sri Lanka, Sri Lanka
Library Services
Permalink -

https://research.usq.edu.au/item/wv414/municipal-solid-waste-derived-biochar-for-the-removal-of-benzene-from-landfill-leachate

  • 51
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Thiolated arsenic in natural systems: What is current, what is new and what needs to be known
Herath, Indika, Vithanage, Meththika, Seneweera, Saman and Bundschuh, Jochen. 2018. "Thiolated arsenic in natural systems: What is current, what is new and what needs to be known." Environment International. 115, pp. 370-386. https://doi.org/10.1016/j.envint.2018.03.027
Antimony as a global dilemma: Geochemistry, mobility, fate and transport
Herath, Indika, Vithanage, Meththika and Bundschuh, Jochen. 2017. "Antimony as a global dilemma: Geochemistry, mobility, fate and transport." Environmental Pollution. 223, pp. 545-559. https://doi.org/10.1016/j.envpol.2017.01.057
Interaction of arsenic with biochar in soil and water: A critical review
Vithanage, Meththika, Herath, Indika, Joseph, Stephen, Bundschuh, Jochen, Bolan, Nanthi, Ok, Yong Sik, Kirkham, M. B. and Rinklebe, Jorg. 2017. "Interaction of arsenic with biochar in soil and water: A critical review." Carbon. 113, pp. 219-230. https://doi.org/10.1016/j.carbon.2016.11.032
Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman, Marchuk, Alla and Ok, Yong Sik. 2021. "Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)." Environmental Pollution. 286, pp. 1-10. https://doi.org/10.1016/j.envpol.2021.117661
Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications." Science of the Total Environment. 768, pp. 1-9. https://doi.org/10.1016/j.scitotenv.2020.144531
An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice." Journal of Hazardous Materials. 405, pp. 1-9. https://doi.org/10.1016/j.jhazmat.2020.124188
Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils
Kumarathilaka, Prasanna. 2020. Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils. PhD Thesis Doctor of Philosophy. University of Southern Queensland. https://doi.org/10.26192/P8BG-FK83
A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches
Herath, Indika, Kumarathilaka, Prasanna, Bundschuh, Jochen, Marchuk, Alla and Rinklebe, Jorg. 2020. "A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches." Talanta. 208, pp. 1-13. https://doi.org/10.1016/j.talanta.2019.120457
Geochemical processes for mobilization of arsenic in groundwater
Herath, I., Bundschuh, J., Vithanage, M. and Bhattacharya, P.. 2016. "Geochemical processes for mobilization of arsenic in groundwater." Bhattacharya, Prosun, Vahter, Marie, Jarsjo, Jerker, Kumpiene, Jurate, Ahmad, Arslan, Sparrenbom, Charlotte, Jacks, Gunnar, Donselaar, Marinus Eric, Bundschuh, Jochen and Naidu, Ravi (ed.) 6th International Congress on Arsenic in the Environment: Arsenic Research and Global Sustainability (AS 2016). Stockholm, Sweden 19 - 23 Jun 2016 London, United Kingdom.
Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research?
Alkurdi, Susan S. A., Herath, Indika, Bundschuh, Jochen, Al-Juboori, Raed A., Vithanage, Meththika and Mohan, Dinesh. 2019. "Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research?" Environment International. 127, pp. 52-69. https://doi.org/10.1016/j.envint.2019.03.012
Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review
Vithanage, Meththika, Kumarathilaka, Prasanna, Oze, Christopher, Karunatilake, Suniti, Seneviratne, Mihiri, Hseu, Zeng-Yei, Gunarathne, Viraj, Dassanayake, Maheshi, Ok, Yong Sik and Rinklebe, Jörg. 2019. "Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review." Environment International. 131 (104974), pp. 1-17. https://doi.org/10.1016/j.envint.2019.104974
Characteristics of Particulate Plastics in Terrestrial Ecosystems
Palansooriya, K. N., Wijesekara, H., Bradney, L., Kumarathilaka, P., Bundschuh, J., Bolan, N. and Ok, Y. S.. 2020. "Characteristics of Particulate Plastics in Terrestrial Ecosystems." Sustainable Waste Management Workshop: Microplastics in the Environment 2020. Singapore 07 - 09 Jan 2020 United States. American Institute of Chemical Engineers. pp. 6
Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew A. and Bundschuh, Jochen. 2020. "Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review." Critical Reviews in Environmental Science and Technology. 50 (1), pp. 31-71. https://doi.org/10.1080/10643389.2019.1618691
Arsenic in cooked rice foods: assessing health risks and mitigation options
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew and Bundschuh, Jochen. 2019. "Arsenic in cooked rice foods: assessing health risks and mitigation options." Environment International. 127, pp. 584-591. https://doi.org/10.1016/j.envint.2019.04.004
Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors." Science of the Total Environment. 642, pp. 485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review." Water Research. 140, pp. 403-414. https://doi.org/10.1016/j.watres.2018.04.034
Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)
Kumarathilaka, P., Bundschuh, J., Seneweera, S. and Meharg, A. A.. 2018. "Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)." 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018). Beijing, China 01 - 06 Jul 2018 Netherlands. CRC Press. pp. 289-290 https://doi.org/10.1201/9781351046633-113
Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil
Kumarathilaka, Prasanna, Ahmad, Mahtab, Herath, Indika, Mahatantila, Kushani, Athapattu, B. C. L., Rinklebe, Jörg, Ok, Yong Sik, Usman, Adel, Al-Wabel, Mohammad I., Abduljabbar, Adel and Vithanage, Meththika. 2018. "Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil." Science of the Total Environment. 625, pp. 547-554. https://doi.org/10.1016/j.scitotenv.2017.12.294
Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil
Kumarathilaka, Prasanna and Vithanage, Meththika. 2017. "Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil." Journal of Chemistry. 2017, pp. 1-9. https://doi.org/10.1155/2017/6180636
Phytoremediation of Landfill Leachates
Kumarathilaka, Prasanna, Wijesekara, Hasintha, Bolan, Nanthi, Kunhikrishnan, Anitha and Vithanage, Meththika. 2017. "Phytoremediation of Landfill Leachates." Ansari, Abid A., Gill, Sarvajeet Singh, Gill, Ritu, Lanza, Guy R. and Newman, Lee (ed.) Phytoremediation: Management of Environmental Contaminants. Switzerland. Springer. pp. 439-467
Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Seneviratne, Mihiri, Seneviratne, Gamini, Rajakaruna, Nishanta, Vithanage, Meththika and Ok, Yong Sik. 2017. "Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil." Journal of Soils and Sediments: protection, risk assessment and remediation. 17 (3), pp. 665-673. https://doi.org/10.1007/s11368-015-1243-y
Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Hseu, Zeng-Yei, Ok, Yong Sik and Vithanage, Meththika. 2017. "Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 39 (2), pp. 391-401. https://doi.org/10.1007/s10653-016-9842-0
Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization
Herath, Indika, Vithanage, Meththika, Bundschuh, Jochen, Maity, Jyoti Prakash and Bhattacharya, Prosun. 2016. "Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization." Current Pollution Reports. 2 (1), pp. 68-89. https://doi.org/10.1007/s40726-016-0028-2
Perchlorate as an emerging contaminant in soil, water and food
Kumarathilaka, Prasanna, Oze, Christopher, Indraratne, S. P. and Vithanage, Meththika. 2016. "Perchlorate as an emerging contaminant in soil, water and food ." Chemosphere. 150, pp. 667-677. https://doi.org/10.1016/j.chemosphere.2016.01.109
Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar
Herath, Indika, Kumarathilaka, Prasanna, Al-Wabel, Mohammad I., Abduljabbar, Adel, Ahmad, Mahtab, Usman, Adel R. A. and Vithanage, Meththika. 2016. "Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar." Microporous and Mesoporous Materials. 225, pp. 280-288. https://doi.org/10.1016/j.micromeso.2016.01.017
Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka
Vithanage, Meththika, Herath, Indika, Achinthya, S. S., Bandara, Tharanga, Weerasundara, Lakshika, Mayakaduwa, S.S., Jayawardhana, Yohan and Kumarathilaka, Prasanna. 2016. "Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka." Archives of Public Health. 74 (1), pp. 1-7. https://doi.org/10.1186/s13690-016-0133-0
Biosolids Enhance Mine Site Rehabilitation and Revegetation
Wijesekara, H., Bolan, N. S., Kumarathilaka, P., Geekiyanage, N., Kunhikrishnan, A., Seshadri, B., Saint, C., Surapaneni, A. and Vithanage, M.. 2016. "Biosolids Enhance Mine Site Rehabilitation and Revegetation." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 45-71
Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate
Jayawardhana, Y., Kumarathilaka, P., Herath, I. and Vithanage, M.. 2016. "Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 117-148
Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka
Kumarathilaka, Prasanna, Jayawardhana, Yohan, Basnayake, B. F. A., Mowjood, M. I. M., Nagamori, M., Saito, Takeshi, Kawamoto, Ken and Vithanage, Meththika. 2016. "Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka." Groundwater for Sustainable Development. 2-3, pp. 1-6. https://doi.org/10.1016/j.gsd.2016.04.001
Perchlorate mobilization of metals in serpentine soils
Kumarathilaka, Prasanna, Oze, Christopher and Vithanage, Meththika. 2016. "Perchlorate mobilization of metals in serpentine soils." Applied Geochemistry. 74, pp. 203-209. https://doi.org/10.1016/j.apgeochem.2016.10.009