Biosolids Enhance Mine Site Rehabilitation and Revegetation

Edited book (chapter)


Wijesekara, H., Bolan, N. S., Kumarathilaka, P., Geekiyanage, N., Kunhikrishnan, A., Seshadri, B., Saint, C., Surapaneni, A. and Vithanage, M.. 2016. "Biosolids Enhance Mine Site Rehabilitation and Revegetation." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 45-71
Chapter Title

Biosolids Enhance Mine Site Rehabilitation and Revegetation

Book Chapter CategoryEdited book (chapter)
ERA Publisher ID1821
Book TitleEnvironmental Materials and Waste: Resource Recovery and Pollution Prevention
AuthorsWijesekara, H., Bolan, N. S., Kumarathilaka, P., Geekiyanage, N., Kunhikrishnan, A., Seshadri, B., Saint, C., Surapaneni, A. and Vithanage, M.
EditorsPrasad, M. N. V. and Shih, Kaimin
Page Range45-71
Chapter Number3
Number of Pages28
Year2016
PublisherElsevier
Place of PublicationNetherlands
ISBN9780128039069
9780128038376
Digital Object Identifier (DOI)https://doi.org/10.1016/B978-0-12-803837-6.00003-2
Web Address (URL)https://www.sciencedirect.com/science/article/pii/B9780128038376000032
Abstract

Globally, around 10×107tonsyear-1 of biosolids is generated from wastewater treatment facilities. Biosolids contain significant amounts of organic matters and nutrients. Therefore, biosolids can be used to improve infertile and degraded soils in certain mine sites. Shortfalls in topsoil, heavy metal-rich tailings and drainage, residual soils with poor physical properties, and low-organic matter soils are common consequences of degraded mine soils. These issues adversely affect soil health including microbial activity, flora, and fauna, thereby hindering reestablishment of the lost ecological integrity.Rehabilitation has been achieved in a number of mine sites by incorporating biosolids, which demonstrated sustainable remediation of these sites. Improvements in the biological, chemical, and physical properties of degraded lands are associated with these rehabilitation cases. Furthermore, these improvements enhance the nutrient cycling, water purification, and restoration of plants and increase the recreational value of the land, thereby helping in the emergence of novel ecosystems.This chapter describes the composition of different types of biosolids and their generation, benefits, and current regulations for use, particularly regarding mine site rehabilitation and environmental contamination issues including human health concerns. Finally, challenges and future research needs are identified in terms of the minimization of environmental complications and sustainable use of biosolids.

KeywordsBiosolids; Degraded lands; Mine site rehabilitation; Mine spoils; Mining
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

FunderAustralian Research Council
Byline AffiliationsUniversity of Newcastle
National Institute of Fundamental Studies, Sri Lanka
Kyoto University, Japan
Rajarata University, Sri Lanka
National Academy of Agricultural Science, Korea
University of South Australia
South East Water, Victoria
Library Services
Permalink -

https://research.usq.edu.au/item/wv4v6/biosolids-enhance-mine-site-rehabilitation-and-revegetation

  • 70
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Thiolated arsenic in natural systems: What is current, what is new and what needs to be known
Herath, Indika, Vithanage, Meththika, Seneweera, Saman and Bundschuh, Jochen. 2018. "Thiolated arsenic in natural systems: What is current, what is new and what needs to be known." Environment International. 115, pp. 370-386. https://doi.org/10.1016/j.envint.2018.03.027
Antimony as a global dilemma: Geochemistry, mobility, fate and transport
Herath, Indika, Vithanage, Meththika and Bundschuh, Jochen. 2017. "Antimony as a global dilemma: Geochemistry, mobility, fate and transport." Environmental Pollution. 223, pp. 545-559. https://doi.org/10.1016/j.envpol.2017.01.057
Interaction of arsenic with biochar in soil and water: A critical review
Vithanage, Meththika, Herath, Indika, Joseph, Stephen, Bundschuh, Jochen, Bolan, Nanthi, Ok, Yong Sik, Kirkham, M. B. and Rinklebe, Jorg. 2017. "Interaction of arsenic with biochar in soil and water: A critical review." Carbon. 113, pp. 219-230. https://doi.org/10.1016/j.carbon.2016.11.032
Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs
Naidu, R., Nadebaum, P., Fang, C., Cousins, I., Pennell, K., Conder, J., Newell, C. J., Longpre, D., Warner, S., Crosbie, N. D., Surapaneni, A., Bekele, D., Spiese, R., Bradshaw, T., Slee, D., Liu, Y., Qi, F., Mallavarapu, M., Duan, L., ..., Nathanail, P.. 2020. "Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs." Environmental Technology and Innovation. 19, pp. 1-18. https://doi.org/10.1016/j.eti.2020.100915
Combining environmental isotopes with Contaminants of Emerging Concern (CECs) to characterise wastewater derived impacts on groundwater quality
McCance, W., Jones, O. A. H., Cendon, D. I., Edwards, M., Surapaneni, A., Chadalavada, S., Wang, S. and Currell, M.. 2020. "Combining environmental isotopes with Contaminants of Emerging Concern (CECs) to characterise wastewater derived impacts on groundwater quality." Water Research. 182, pp. 1-15. https://doi.org/10.1016/j.watres.2020.116036
Decoupling wastewater impacts from hydrogeochemical trends in impacted groundwater resources
McCance, W., Jones, O. A. H., Cendon, D. I., Edwards, M., Surapaneni, A., Chadalavada, S. and Currell, M.. 2021. "Decoupling wastewater impacts from hydrogeochemical trends in impacted groundwater resources." Science of the Total Environment. 774, pp. 1-16. https://doi.org/10.1016/j.scitotenv.2021.145781
Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman, Marchuk, Alla and Ok, Yong Sik. 2021. "Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.)." Environmental Pollution. 286, pp. 1-10. https://doi.org/10.1016/j.envpol.2021.117661
Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "Rice genotype's responses to arsenic stress and cancer risk: the effects of integrated birnessite-modified rice hull biochar-water management applications." Science of the Total Environment. 768, pp. 1-9. https://doi.org/10.1016/j.scitotenv.2020.144531
An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice
Kumarathilaka, Prasanna, Bundschuh, Jochen, Seneweera, Saman and Ok, Yong Sik. 2021. "An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice." Journal of Hazardous Materials. 405, pp. 1-9. https://doi.org/10.1016/j.jhazmat.2020.124188
Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils
Kumarathilaka, Prasanna. 2020. Combined effects of the biochar/biochar composites and water management strategies on the phyto-availability of arsenic in paddy rice soils. PhD Thesis Doctor of Philosophy. University of Southern Queensland. https://doi.org/10.26192/P8BG-FK83
A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches
Herath, Indika, Kumarathilaka, Prasanna, Bundschuh, Jochen, Marchuk, Alla and Rinklebe, Jorg. 2020. "A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches." Talanta. 208, pp. 1-13. https://doi.org/10.1016/j.talanta.2019.120457
Geochemical processes for mobilization of arsenic in groundwater
Herath, I., Bundschuh, J., Vithanage, M. and Bhattacharya, P.. 2016. "Geochemical processes for mobilization of arsenic in groundwater." Bhattacharya, Prosun, Vahter, Marie, Jarsjo, Jerker, Kumpiene, Jurate, Ahmad, Arslan, Sparrenbom, Charlotte, Jacks, Gunnar, Donselaar, Marinus Eric, Bundschuh, Jochen and Naidu, Ravi (ed.) 6th International Congress on Arsenic in the Environment: Arsenic Research and Global Sustainability (AS 2016). Stockholm, Sweden 19 - 23 Jun 2016 London, United Kingdom.
Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research?
Alkurdi, Susan S. A., Herath, Indika, Bundschuh, Jochen, Al-Juboori, Raed A., Vithanage, Meththika and Mohan, Dinesh. 2019. "Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research?" Environment International. 127, pp. 52-69. https://doi.org/10.1016/j.envint.2019.03.012
Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review
Vithanage, Meththika, Kumarathilaka, Prasanna, Oze, Christopher, Karunatilake, Suniti, Seneviratne, Mihiri, Hseu, Zeng-Yei, Gunarathne, Viraj, Dassanayake, Maheshi, Ok, Yong Sik and Rinklebe, Jörg. 2019. "Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review." Environment International. 131 (104974), pp. 1-17. https://doi.org/10.1016/j.envint.2019.104974
Characteristics of Particulate Plastics in Terrestrial Ecosystems
Palansooriya, K. N., Wijesekara, H., Bradney, L., Kumarathilaka, P., Bundschuh, J., Bolan, N. and Ok, Y. S.. 2020. "Characteristics of Particulate Plastics in Terrestrial Ecosystems." Sustainable Waste Management Workshop: Microplastics in the Environment 2020. Singapore 07 - 09 Jan 2020 United States. American Institute of Chemical Engineers. pp. 6
Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew A. and Bundschuh, Jochen. 2020. "Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review." Critical Reviews in Environmental Science and Technology. 50 (1), pp. 31-71. https://doi.org/10.1080/10643389.2019.1618691
Arsenic in cooked rice foods: assessing health risks and mitigation options
Kumarathilaka, Prasanna, Seneweera, Saman, Ok, Yong Sik, Meharg, Andrew and Bundschuh, Jochen. 2019. "Arsenic in cooked rice foods: assessing health risks and mitigation options." Environment International. 127, pp. 584-591. https://doi.org/10.1016/j.envint.2019.04.004
Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors." Science of the Total Environment. 642, pp. 485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review
Kumarathilaka, Prasanna, Seneweera, Saman, Meharg, Andrew and Bundschuh, Jochen. 2018. "Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - a review." Water Research. 140, pp. 403-414. https://doi.org/10.1016/j.watres.2018.04.034
Municipal solid waste-derived biochar for the removal of benzene from landfill leachate
Jayawardhana, Yohan, Mayakaduwa, S. S., Kumarathilaka, Prasanna, Gamage, Sewwandi and Vithanage, Meththika. 2019. "Municipal solid waste-derived biochar for the removal of benzene from landfill leachate." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 41 (4), pp. 1739-1753. https://doi.org/10.1007/s10653-017-9973-y
Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)
Kumarathilaka, P., Bundschuh, J., Seneweera, S. and Meharg, A. A.. 2018. "Arsenic speciation in soil-water system and their uptake by rice (Oryza sativa)." 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018). Beijing, China 01 - 06 Jul 2018 Netherlands. CRC Press. pp. 289-290 https://doi.org/10.1201/9781351046633-113
Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil
Kumarathilaka, Prasanna, Ahmad, Mahtab, Herath, Indika, Mahatantila, Kushani, Athapattu, B. C. L., Rinklebe, Jörg, Ok, Yong Sik, Usman, Adel, Al-Wabel, Mohammad I., Abduljabbar, Adel and Vithanage, Meththika. 2018. "Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil." Science of the Total Environment. 625, pp. 547-554. https://doi.org/10.1016/j.scitotenv.2017.12.294
Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil
Kumarathilaka, Prasanna and Vithanage, Meththika. 2017. "Influence of Gliricidia sepium Biochar on Attenuate Perchlorate-Induced Heavy Metal Release in Serpentine Soil." Journal of Chemistry. 2017, pp. 1-9. https://doi.org/10.1155/2017/6180636
Phytoremediation of Landfill Leachates
Kumarathilaka, Prasanna, Wijesekara, Hasintha, Bolan, Nanthi, Kunhikrishnan, Anitha and Vithanage, Meththika. 2017. "Phytoremediation of Landfill Leachates." Ansari, Abid A., Gill, Sarvajeet Singh, Gill, Ritu, Lanza, Guy R. and Newman, Lee (ed.) Phytoremediation: Management of Environmental Contaminants. Switzerland. Springer. pp. 439-467
Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Seneviratne, Mihiri, Seneviratne, Gamini, Rajakaruna, Nishanta, Vithanage, Meththika and Ok, Yong Sik. 2017. "Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil." Journal of Soils and Sediments: protection, risk assessment and remediation. 17 (3), pp. 665-673. https://doi.org/10.1007/s11368-015-1243-y
Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil
Bandara, Tharanga, Herath, Indika, Kumarathilaka, Prasanna, Hseu, Zeng-Yei, Ok, Yong Sik and Vithanage, Meththika. 2017. "Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil." Environmental Geochemistry and Health: official journal of the Society for Environmental Geochemistry and Health. 39 (2), pp. 391-401. https://doi.org/10.1007/s10653-016-9842-0
Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization
Herath, Indika, Vithanage, Meththika, Bundschuh, Jochen, Maity, Jyoti Prakash and Bhattacharya, Prosun. 2016. "Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization." Current Pollution Reports. 2 (1), pp. 68-89. https://doi.org/10.1007/s40726-016-0028-2
Perchlorate as an emerging contaminant in soil, water and food
Kumarathilaka, Prasanna, Oze, Christopher, Indraratne, S. P. and Vithanage, Meththika. 2016. "Perchlorate as an emerging contaminant in soil, water and food ." Chemosphere. 150, pp. 667-677. https://doi.org/10.1016/j.chemosphere.2016.01.109
Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar
Herath, Indika, Kumarathilaka, Prasanna, Al-Wabel, Mohammad I., Abduljabbar, Adel, Ahmad, Mahtab, Usman, Adel R. A. and Vithanage, Meththika. 2016. "Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar." Microporous and Mesoporous Materials. 225, pp. 280-288. https://doi.org/10.1016/j.micromeso.2016.01.017
Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka
Vithanage, Meththika, Herath, Indika, Achinthya, S. S., Bandara, Tharanga, Weerasundara, Lakshika, Mayakaduwa, S.S., Jayawardhana, Yohan and Kumarathilaka, Prasanna. 2016. "Iodine in commercial edible iodized salts and assessment of iodine exposure in Sri Lanka." Archives of Public Health. 74 (1), pp. 1-7. https://doi.org/10.1186/s13690-016-0133-0
Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate
Jayawardhana, Y., Kumarathilaka, P., Herath, I. and Vithanage, M.. 2016. "Municipal Solid Waste Biochar for Prevention of Pollution From Landfill Leachate." Prasad, M. N. V. and Shih, Kaimin (ed.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Netherlands. Elsevier. pp. 117-148
Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka
Kumarathilaka, Prasanna, Jayawardhana, Yohan, Basnayake, B. F. A., Mowjood, M. I. M., Nagamori, M., Saito, Takeshi, Kawamoto, Ken and Vithanage, Meththika. 2016. "Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka." Groundwater for Sustainable Development. 2-3, pp. 1-6. https://doi.org/10.1016/j.gsd.2016.04.001
Perchlorate mobilization of metals in serpentine soils
Kumarathilaka, Prasanna, Oze, Christopher and Vithanage, Meththika. 2016. "Perchlorate mobilization of metals in serpentine soils." Applied Geochemistry. 74, pp. 203-209. https://doi.org/10.1016/j.apgeochem.2016.10.009