Protection analysis tool for distribution networks with a high embedded generation penetration

Article


Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2018. "Protection analysis tool for distribution networks with a high embedded generation penetration." International Journal of Electrical Power and Energy Systems. 107, pp. 605-614. https://doi.org/10.1016/j.ijepes.2018.12.001
Article Title

Protection analysis tool for distribution networks with a high embedded generation penetration

ERA Journal ID4478
Article CategoryArticle
AuthorsKennedy, Joel (Author), Ciufo, Phil (Author) and Agalgaonkar, Ashish (Author)
Journal TitleInternational Journal of Electrical Power and Energy Systems
Journal Citation107, pp. 605-614
Number of Pages10
Year2018
Place of PublicationUnited Kingdom
ISSN0142-0615
1879-3517
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ijepes.2018.12.001
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0142061518321604
Abstract

The protection design philosophy of distribution networks is predicated on the inherent radiality that exists in such networks. However, the increased presence of inverter-interfaced embedded generation is compromising the radial nature of distribution networks. Hence, the increasing importance of accurately modelling the fault response of inverter-interfaced embedded generation is becoming apparent. Presently, the impacts of large penetrations of inverter-interfaced embedded generators on protection adequacy are determined through time-domain modelling. This paper proposes a tool for determining a snapshot of the expected protection response of distribution networks with inverter-interfaced embedded generation. The tool automatically simulates all fault types at the extremities of each protection zone and compiles the data to generate a report that showcases important information from a protection adequacy perspective. The tool can simulate fault responses in orders of magnitude faster than time-domain analysis using a load-flow like algorithm. This algorithm is designed to have a high convergence in fault scenarios and also approximate the fault behaviour of inverter-interfaced embedded generators. Finally, the tool investigates whether a new embedded generator installation may require an upgrade of network infrastructure or an amendment of protection settings. The tool is implemented using MATLAB and compared with time-domain simulations for verification purposes.

KeywordsEmbedded generation; Inverter-interfaced; Protection; Simulation
ANZSRC Field of Research 2020400805. Electrical energy transmission, networks and systems
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsUniversity of Wollongong
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q6w93/protection-analysis-tool-for-distribution-networks-with-a-high-embedded-generation-penetration

  • 122
    total views
  • 3
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Fostering Enduring Peer Learning Groups for 1st Year Students
Brown, Jason, Kennedy, Joel, Raj, Nawin and Quinton, Matthew. 2023. "Fostering Enduring Peer Learning Groups for 1st Year Students." 34th Annual Conference of the Australasian Association for Engineering Education (AAEE 2023). Gold Coast, Australia 03 - 06 Dec 2023 Australia. Australasian Association for Engineering Education.
A proposed hedge-based energy market model to manage renewable intermittency
Johnathon, Chris, Agalgaonkar, Ashish Prakash, Planiden, Chayne and Kennedy, Joel. 2023. "A proposed hedge-based energy market model to manage renewable intermittency." Renewable Energy. 207, pp. 376-384. https://doi.org/10.1016/j.renene.2023.03.017
Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts
Johnathon, Chris, Agalgaonkar, Ashish, Kennedy, Joel and Afandi, Izzah. 2020. "Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts." 29th Australasian Universities Power Engineering Conference (AUPEC 2019). Nadi, Fiji 26 - 29 Nov 2019 United States. https://doi.org/10.1109/AUPEC48547.2019.243753
Cost Allocation of Voltage Unbalance in Distribution Networks
Kennedy, Joel, Morcos, Martina and Lo, Assane. 2020. "Cost Allocation of Voltage Unbalance in Distribution Networks." 19th International Conference on Harmonics and Quality of Power (ICHQP 2020). Dubai, United Arab Emirates 06 - 07 Jul 2020 https://doi.org/10.1109/ICHQP46026.2020.9177935
Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators." Abu-Siada, A. and Masoum, M. A. S. (ed.) 2014 Australasian Universities Power Engineering Conference (AUPEC 2014). Perth, Australia 28 Sep - 01 Oct 2014 Perth, Australia. https://doi.org/10.1109/AUPEC.2014.6966578
Voltage-based storage control for distributed photovoltaic generation with battery systems
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "Voltage-based storage control for distributed photovoltaic generation with battery systems." Journal of Energy Storage. 8, pp. 274-285. https://doi.org/10.1016/j.est.2016.10.007
A review of protection systems for distribution networks embedded with renewable generation
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "A review of protection systems for distribution networks embedded with renewable generation." Renewable and Sustainable Energy Reviews. 58, pp. 1308-1317. https://doi.org/10.1016/j.rser.2015.12.258
A Proposed Algorithm for the Self-Healing of Power Distribution Networks
Johnathon, Chris and Kennedy, Joel. 2018. "A Proposed Algorithm for the Self-Healing of Power Distribution Networks." Sharma, Anurag and Hao, Quan (ed.) 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT). Singapore 22 - 25 May 2018 Singapore. https://doi.org/10.1109/ISGT-Asia.2018.8467816
Construction site layout optimization model considering cost and safety in a dynamic environment
Jaafar, Kamal, Elbarkouky, Raghda and Kennedy, Joel. 2020. "Construction site layout optimization model considering cost and safety in a dynamic environment." Asian Journal of Civil Engineering. 22 (2), pp. 297-312. https://doi.org/10.1007/s42107-020-00314-3
Solar and sand: Dust deposit mitigation in the desert for PV arrays
Kennedy, Joel, Lo, Assane, Rajamani, Haile-Selassie and Lutfi, Saad. 2021. "Solar and sand: Dust deposit mitigation in the desert for PV arrays." Sustainable Energy, Grids and Networks. 28, pp. 1-7. https://doi.org/10.1016/j.segan.2021.100531
Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation
Johnathon, Chris, Agalgaonkar, Ashish Prakash, Kennedy, Joel and Planiden, Chayne. 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation." Energies. 14 (22), pp. 1-15. https://doi.org/10.3390/en14227618
Intelligent Load Management in Microgrids
Kennedy, J., Ciufo, P. and Agalgaonkar, A.. 2012. "Intelligent Load Management in Microgrids." 2012 IEEE Power and Energy Society General Meeting. San Diego, United States 22 - 26 Jul 2012 United States. https://doi.org/10.1109/PESGM.2012.6345729
Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration." Kuzle, Igor, Capuder, Tomislav and Pandzic, Hrvoje (ed.) 2014 IEEE International Energy Conference (ENERGYCON). Cavtat, Croatia 13 - 16 May 2014 New York, United States. https://doi.org/10.1109/ENERGYCON.2014.6850562