A proposed hedge-based energy market model to manage renewable intermittency

Article


Johnathon, Chris, Agalgaonkar, Ashish Prakash, Planiden, Chayne and Kennedy, Joel. 2023. "A proposed hedge-based energy market model to manage renewable intermittency." Renewable Energy. 207, pp. 376-384. https://doi.org/10.1016/j.renene.2023.03.017
Article Title

A proposed hedge-based energy market model to manage renewable intermittency

Article CategoryArticle
AuthorsJohnathon, Chris, Agalgaonkar, Ashish Prakash, Planiden, Chayne and Kennedy, Joel
Journal TitleRenewable Energy
Journal Citation207, pp. 376-384
Number of Pages9
Year2023
Place of PublicationUnited Kingdom
Digital Object Identifier (DOI)https://doi.org/10.1016/j.renene.2023.03.017
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0960148123003038
AbstractRenewable energy power producers are exposed to significant volatility in revenue due to intermittency associated with wind and solar energy. Moreover, higher penetration of variable renewable energy in the electric grids is significantly increasing the cost associated with procuring reserves, resulting in higher electricity costs to consumers. Hence, a market that can appropriately distribute the cost of procuring reserves whilst ensuring revenue stability for renewable energy producers is crucial. In this work, the authors propose a novel hedge-based energy market model that allows renewable generators to secure hedge contracts from flexible generating technologies as insurance against weather-driven energy deficits. The proposed model supplements a representative day-ahead market model and maximizes the revenue of market participants whilst diminishing the costs of procuring reserves and generating investment signals for green projects. A mathematical model is formulated to determine market equilibrium based on the Karush Kuhn Tucker (KKT) optimality conditions. Simulation studies are carried out to demonstrate the efficacy of the proposed model on a test network using MATLAB. The theoretical results are verified by simulation results and provide a feasible region in which mutually acceptable hedge contracts result in higher overall revenues. The results show that a hedge-based energy market model can be deployed to manage renewable intermittency in a day-ahead energy market model to address the risk management needs of renewable power producers.
KeywordsEnergy market; Variable renewable energy; Green finance; Market modeling
ANZSRC Field of Research 2020400805. Electrical energy transmission, networks and systems
Byline AffiliationsUniversity of Wollongong
School of Engineering
Permalink -

https://research.usq.edu.au/item/z260q/a-proposed-hedge-based-energy-market-model-to-manage-renewable-intermittency

Download files

  • 46
    total views
  • 28
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

Fostering Enduring Peer Learning Groups for 1st Year Students
Brown, Jason, Kennedy, Joel, Raj, Nawin and Quinton, Matthew. 2023. "Fostering Enduring Peer Learning Groups for 1st Year Students." 34th Annual Conference of the Australasian Association for Engineering Education (AAEE 2023). Gold Coast, Australia 03 - 06 Dec 2023 Australia. Australasian Association for Engineering Education.
Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts
Johnathon, Chris, Agalgaonkar, Ashish, Kennedy, Joel and Afandi, Izzah. 2020. "Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts." 29th Australasian Universities Power Engineering Conference (AUPEC 2019). Nadi, Fiji 26 - 29 Nov 2019 United States. https://doi.org/10.1109/AUPEC48547.2019.243753
Cost Allocation of Voltage Unbalance in Distribution Networks
Kennedy, Joel, Morcos, Martina and Lo, Assane. 2020. "Cost Allocation of Voltage Unbalance in Distribution Networks." 19th International Conference on Harmonics and Quality of Power (ICHQP 2020). Dubai, United Arab Emirates 06 - 07 Jul 2020 https://doi.org/10.1109/ICHQP46026.2020.9177935
Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators." Abu-Siada, A. and Masoum, M. A. S. (ed.) 2014 Australasian Universities Power Engineering Conference (AUPEC 2014). Perth, Australia 28 Sep - 01 Oct 2014 Perth, Australia. https://doi.org/10.1109/AUPEC.2014.6966578
Voltage-based storage control for distributed photovoltaic generation with battery systems
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "Voltage-based storage control for distributed photovoltaic generation with battery systems." Journal of Energy Storage. 8, pp. 274-285. https://doi.org/10.1016/j.est.2016.10.007
A review of protection systems for distribution networks embedded with renewable generation
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "A review of protection systems for distribution networks embedded with renewable generation." Renewable and Sustainable Energy Reviews. 58, pp. 1308-1317. https://doi.org/10.1016/j.rser.2015.12.258
A Proposed Algorithm for the Self-Healing of Power Distribution Networks
Johnathon, Chris and Kennedy, Joel. 2018. "A Proposed Algorithm for the Self-Healing of Power Distribution Networks." Sharma, Anurag and Hao, Quan (ed.) 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT). Singapore 22 - 25 May 2018 Singapore. https://doi.org/10.1109/ISGT-Asia.2018.8467816
Protection analysis tool for distribution networks with a high embedded generation penetration
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2018. "Protection analysis tool for distribution networks with a high embedded generation penetration." International Journal of Electrical Power and Energy Systems. 107, pp. 605-614. https://doi.org/10.1016/j.ijepes.2018.12.001
Construction site layout optimization model considering cost and safety in a dynamic environment
Jaafar, Kamal, Elbarkouky, Raghda and Kennedy, Joel. 2020. "Construction site layout optimization model considering cost and safety in a dynamic environment." Asian Journal of Civil Engineering. 22 (2), pp. 297-312. https://doi.org/10.1007/s42107-020-00314-3
Solar and sand: Dust deposit mitigation in the desert for PV arrays
Kennedy, Joel, Lo, Assane, Rajamani, Haile-Selassie and Lutfi, Saad. 2021. "Solar and sand: Dust deposit mitigation in the desert for PV arrays." Sustainable Energy, Grids and Networks. 28, pp. 1-7. https://doi.org/10.1016/j.segan.2021.100531
Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation
Johnathon, Chris, Agalgaonkar, Ashish Prakash, Kennedy, Joel and Planiden, Chayne. 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation." Energies. 14 (22), pp. 1-15. https://doi.org/10.3390/en14227618
Intelligent Load Management in Microgrids
Kennedy, J., Ciufo, P. and Agalgaonkar, A.. 2012. "Intelligent Load Management in Microgrids." 2012 IEEE Power and Energy Society General Meeting. San Diego, United States 22 - 26 Jul 2012 United States. https://doi.org/10.1109/PESGM.2012.6345729
Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration." Kuzle, Igor, Capuder, Tomislav and Pandzic, Hrvoje (ed.) 2014 IEEE International Energy Conference (ENERGYCON). Cavtat, Croatia 13 - 16 May 2014 New York, United States. https://doi.org/10.1109/ENERGYCON.2014.6850562
An Evaluation Framework to Assess the Performance of Electricity Market Models
Johnathon, Chris, Agalgaonkar, Ashish, Planiden, Chayne and Kennedy, Joel. 2022. "An Evaluation Framework to Assess the Performance of Electricity Market Models." 2022 IEEE Industry Applications Society Annual Meeting (IAS 2022). Detroit, USA 09 - 14 Oct 2022 United States. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/IAS54023.2022.9939826