Intelligent Load Management in Microgrids

Paper


Kennedy, J., Ciufo, P. and Agalgaonkar, A.. 2012. "Intelligent Load Management in Microgrids." 2012 IEEE Power and Energy Society General Meeting. San Diego, United States 22 - 26 Jul 2012 United States. https://doi.org/10.1109/PESGM.2012.6345729
Paper/Presentation Title

Intelligent Load Management in Microgrids

Presentation TypePaper
AuthorsKennedy, J. (Author), Ciufo, P. (Author) and Agalgaonkar, A. (Author)
Journal or Proceedings TitleProceedings of the 2012 IEEE Power and Energy Society General Meeting
ERA Conference ID50486
Article Number6345729
Number of Pages8
Year2012
Place of PublicationUnited States
ISBN9781467327275
Digital Object Identifier (DOI)https://doi.org/10.1109/PESGM.2012.6345729
Web Address (URL) of Paperhttps://ieeexplore.ieee.org/document/6345729
Conference/Event2012 IEEE Power and Energy Society General Meeting
IEEE Power and Energy Society General Meeting
Event Details
2012 IEEE Power and Energy Society General Meeting
Event Date
22 to end of 26 Jul 2012
Event Location
San Diego, United States
Event Details
IEEE Power and Energy Society General Meeting
PES-GM
Abstract

The increased levels of distributed generator (DG) penetration and the customer demand for high levels of reliability have attributed to the formation of the Microgrid concept. The Microgrid concept contains a variety of technical challenges, including load management and anti-islanding protection discrimination strategies. This paper provides a novel scheme in which loads and DG are able to detect the conditions where the load of the island cannot be sufficiently supplied. In these instances, a load shedding algorithm systematically removes loads from the system until an island can be maintained within satisfactory operating limits utilising the local DG. The concept of an Intelligent Load Shedder (ILS) module is proposed in this paper. This module is connected in series with non-critical loads in order to detect the conditions where that non-essential load should be isolated from an island. This module must be capable of communicating with the static transfer switch (STS), which is the intelligent isolator associated with the island. The STS will also be capable of sending and receiving data with each DG's islanding protection device. The combined algorithmic control of the STS, ILS module and DG islanding protection device forms the Intelligent Load Management algorithm. This algorithm is capable of islanding protection and load shedding irrespective of the use of communications. The algorithms within this paper are simulated using MATLAB script. The results show that, on a theoretical level, the intelligent load management scheme described in this paper can be used to detect the conditions where an insufficient load is available using local parameters. Load shedding coordination is also shown to be possible with and without the use of communications between the STS, ILS module and DG islanding protection module.

KeywordsDistributed power generation; Electric load management
ANZSRC Field of Research 2020400805. Electrical energy transmission, networks and systems
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsUniversity of Wollongong
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q6wq0/intelligent-load-management-in-microgrids

  • 149
    total views
  • 2
    total downloads
  • 7
    views this month
  • 0
    downloads this month

Export as

Related outputs

Fostering Enduring Peer Learning Groups for 1st Year Students
Brown, Jason, Kennedy, Joel, Raj, Nawin and Quinton, Matthew. 2023. "Fostering Enduring Peer Learning Groups for 1st Year Students." 34th Annual Conference of the Australasian Association for Engineering Education (AAEE 2023). Gold Coast, Australia 03 - 06 Dec 2023 Australia. Australasian Association for Engineering Education.
A proposed hedge-based energy market model to manage renewable intermittency
Johnathon, Chris, Agalgaonkar, Ashish Prakash, Planiden, Chayne and Kennedy, Joel. 2023. "A proposed hedge-based energy market model to manage renewable intermittency." Renewable Energy. 207, pp. 376-384. https://doi.org/10.1016/j.renene.2023.03.017
Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts
Johnathon, Chris, Agalgaonkar, Ashish, Kennedy, Joel and Afandi, Izzah. 2020. "Optimal power flow with conventional and non-conventional generating resources in modern grids considering environmental impacts." 29th Australasian Universities Power Engineering Conference (AUPEC 2019). Nadi, Fiji 26 - 29 Nov 2019 United States. https://doi.org/10.1109/AUPEC48547.2019.243753
Cost Allocation of Voltage Unbalance in Distribution Networks
Kennedy, Joel, Morcos, Martina and Lo, Assane. 2020. "Cost Allocation of Voltage Unbalance in Distribution Networks." 19th International Conference on Harmonics and Quality of Power (ICHQP 2020). Dubai, United Arab Emirates 06 - 07 Jul 2020 https://doi.org/10.1109/ICHQP46026.2020.9177935
Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Fault Approximation Tool for Grid-Connected Inverter-Interfaced Distributed Generators." Abu-Siada, A. and Masoum, M. A. S. (ed.) 2014 Australasian Universities Power Engineering Conference (AUPEC 2014). Perth, Australia 28 Sep - 01 Oct 2014 Perth, Australia. https://doi.org/10.1109/AUPEC.2014.6966578
Voltage-based storage control for distributed photovoltaic generation with battery systems
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "Voltage-based storage control for distributed photovoltaic generation with battery systems." Journal of Energy Storage. 8, pp. 274-285. https://doi.org/10.1016/j.est.2016.10.007
A review of protection systems for distribution networks embedded with renewable generation
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2016. "A review of protection systems for distribution networks embedded with renewable generation." Renewable and Sustainable Energy Reviews. 58, pp. 1308-1317. https://doi.org/10.1016/j.rser.2015.12.258
A Proposed Algorithm for the Self-Healing of Power Distribution Networks
Johnathon, Chris and Kennedy, Joel. 2018. "A Proposed Algorithm for the Self-Healing of Power Distribution Networks." Sharma, Anurag and Hao, Quan (ed.) 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT). Singapore 22 - 25 May 2018 Singapore. https://doi.org/10.1109/ISGT-Asia.2018.8467816
Protection analysis tool for distribution networks with a high embedded generation penetration
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2018. "Protection analysis tool for distribution networks with a high embedded generation penetration." International Journal of Electrical Power and Energy Systems. 107, pp. 605-614. https://doi.org/10.1016/j.ijepes.2018.12.001
Construction site layout optimization model considering cost and safety in a dynamic environment
Jaafar, Kamal, Elbarkouky, Raghda and Kennedy, Joel. 2020. "Construction site layout optimization model considering cost and safety in a dynamic environment." Asian Journal of Civil Engineering. 22 (2), pp. 297-312. https://doi.org/10.1007/s42107-020-00314-3
Solar and sand: Dust deposit mitigation in the desert for PV arrays
Kennedy, Joel, Lo, Assane, Rajamani, Haile-Selassie and Lutfi, Saad. 2021. "Solar and sand: Dust deposit mitigation in the desert for PV arrays." Sustainable Energy, Grids and Networks. 28, pp. 1-7. https://doi.org/10.1016/j.segan.2021.100531
Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation
Johnathon, Chris, Agalgaonkar, Ashish Prakash, Kennedy, Joel and Planiden, Chayne. 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation." Energies. 14 (22), pp. 1-15. https://doi.org/10.3390/en14227618
Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration
Kennedy, Joel, Ciufo, Phil and Agalgaonkar, Ashish. 2014. "Over-voltage mitigation within distribution networks with a high renewable distributed generation penetration." Kuzle, Igor, Capuder, Tomislav and Pandzic, Hrvoje (ed.) 2014 IEEE International Energy Conference (ENERGYCON). Cavtat, Croatia 13 - 16 May 2014 New York, United States. https://doi.org/10.1109/ENERGYCON.2014.6850562
An Evaluation Framework to Assess the Performance of Electricity Market Models
Johnathon, Chris, Agalgaonkar, Ashish, Planiden, Chayne and Kennedy, Joel. 2022. "An Evaluation Framework to Assess the Performance of Electricity Market Models." 2022 IEEE Industry Applications Society Annual Meeting (IAS 2022). Detroit, USA 09 - 14 Oct 2022 United States. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/IAS54023.2022.9939826