Effect of scramjet inlet vortices on fuel plume elongation and mixing rate

Article


Llobet, J.R., Gollan, R.J. and Jahn, I.H.. 2019. "Effect of scramjet inlet vortices on fuel plume elongation and mixing rate ." Aeronautical Journal. 123 (1265), pp. 1032-1052. https://doi.org/10.1017/aer.2019.45
Article Title

Effect of scramjet inlet vortices on fuel plume elongation and mixing rate

Article CategoryArticle
AuthorsLlobet, J.R., Gollan, R.J. and Jahn, I.H.
Journal TitleAeronautical Journal
Journal Citation123 (1265), pp. 1032-1052
Number of Pages21
YearJul 2019
PublisherCambridge University Press
Place of PublicationUnited Kingdom
ISSN0001-9240
2059-6464
Digital Object Identifier (DOI)https://doi.org/10.1017/aer.2019.45
Web Address (URL)https://www.cambridge.org/core/journals/aeronautical-journal/article/effect-of-scramjet-inlet-vortices-on-fuel-plume-elongation-and-mixing-rate/8894C0A97E37718B18CD5C23DB05654C
Abstract

Hypersonic air-breathing propulsion can improve cost and flexibility of Low Earth Orbit (LEO) satellite launch missions. However, at the high flight Mach numbers required for access-to-space, performance margins are extremely tight. Techniques to improve mixing efficiency can push this technology forward. However, these are required to produce a minimal increase in losses and heat loads to be viable. The use of inlet-generated vortices in scramjets for mixing enhancement was previously studied. These vortices interact with the injected fuel plume, stretching it and increasing its effective surface for mixing. Moreover, these vortices are intrinsic to the flowfield. Therefore, contrary to other methods, when using inlet vortices mixing is enhanced without producing additional heat loads or losses. This work studies the vortex-injection interaction through numerical RANS simulations. A non-dimensional variable defining the quality of the plume shape for mixing purposes is proposed. This parameter is used to assess the effect of vortex intensity and injector location on fuel plume shape. The results show the ability of inlet vortices to modify fuel plume shape significantly increasing fuel mixing rate with minimal impact on losses.

KeywordsHypersonic air-breathing propulsion
ANZSRC Field of Research 2020400106. Hypersonic propulsion and hypersonic aerothermodynamics
401204. Computational methods in fluid flow, heat and mass transfer (incl. computational fluid dynamics)
401205. Experimental methods in fluid flow, heat and mass transfer
Byline AffiliationsUniversity of Queensland
Permalink -

https://research.usq.edu.au/item/w7263/effect-of-scramjet-inlet-vortices-on-fuel-plume-elongation-and-mixing-rate

  • 9
    total views
  • 4
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Optical aerodynamic measurements of hypersonic free-flight using Bayesian state estimation
Lock, Andrew, Armstrong, Gerard, Hack, Flynn, Birch, Byrenn, Buttsworth, David and Jahn, Ingo. 2023. "Optical aerodynamic measurements of hypersonic free-flight using Bayesian state estimation." AIAA Aviation 2023 Forum . San Diego, United States 12 202 - 16 Jun 2023 United States. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-3713
The effect of collisions on the multi-fluid plasma Richtmyer–Meshkov instability
Tapinou, K. C., Wheatley, V., Bond, D. and Jahn, I.. 2023. "The effect of collisions on the multi-fluid plasma Richtmyer–Meshkov instability." Physics of Plasmas. 30 (2), pp. 1-25. https://doi.org/10.1063/5.0132461
Development and validation of a Riemann solver in OpenFOAM® for non-ideal compressible fluid dynamics
Qi, Jianhui, Xu, Jinliang, Han, Kuihua and Jahn, Ingo H. J.. 2022. "Development and validation of a Riemann solver in OpenFOAM® for non-ideal compressible fluid dynamics ." Engineering Applications of Computational Fluid Mechanics. 16 (1), pp. 116-140. https://doi.org/10.1080/19942060.2021.2002723
Koopman Operator for Nonlinear Flight Dynamics
Lock, Andrew, Bone, Viv and Jahn, Ingo. 2022. Koopman Operator for Nonlinear Flight Dynamics. Toowoomba, Australia. University of Southern Queensland.
Development and commissioning of the T6 Stalker Tunnel
Collen, Peter, Doherty, Luke J., Subiah, Suria D., Sopek, Tamara, Jahn, Ingo, Gildfind, David, Geraets, Rowland Penty, Gollan, Rowan, Hambidge, Christopher, Morgan, Richard and McGilvray, Matthew. 2021. "Development and commissioning of the T6 Stalker Tunnel." Experiments in Fluids: experimental methods and their applications to fluid flow. 62, pp. 1-24. https://doi.org/10.1007/s00348-021-03298-1
Hypersonic oscillating shock-wave/boundary-layer interaction on a flat plate
Currao, Gaetano M. D., McQuellin, Liam P., Neely, Andrew J., Gai, Sudhir L., O'Byrne, Sean, Zander, Fabian, Buttsworth, David R., McNamara, Jack J. and Jahn, Ingo. 2021. "Hypersonic oscillating shock-wave/boundary-layer interaction on a flat plate." AIAA Journal: devoted to aerospace research and development. 59 (3), pp. 940-959. https://doi.org/10.2514/1.J059590
A survey of mHealth use from a physician perspective in paediatric emergency care in the UK and Ireland
Jahn, Haiko Kurt, Jahn, Ingo Henry Johannes, Behringer, Wilhelm, Lyttle, Mark D., Roland, Damian and Paediatric Emergency Research in the United Kingdom. 2021. "A survey of mHealth use from a physician perspective in paediatric emergency care in the UK and Ireland ." European Journal of Pediatrics. 180 (8), pp. 2409-2418. https://doi.org/10.1007/s00431-021-04023-0
Letter in response to letter by Diba Behzad-Noori & Gurdas Singh in response to ‘Prescribing in a paediatric emergency’
Jahn, Haiko Kurt, Jahn, Ingo Henry, Roland, Damian, Behringer, Wilhelm, Lyttle, Mark and Paediatric Emergency Research in the United Kingdom and Ireland (PERUKI). 2021. "Letter in response to letter by Diba Behzad-Noori & Gurdas Singh in response to ‘Prescribing in a paediatric emergency’ ." Acta Paediatrica. 110 (3), pp. 1077-1077. https://doi.org/10.1111/apa.15616
Prescribing in a paediatric emergency: A PERUKI survey of prescribing and resuscitation aids
Jahn, Haiko Kurt, Jahn, Ingo Henry Johannes, Roland, Damian, Behringer, Wilhelm, Lyttle, Mark and Paediatric Emergency Research in the United Kingdom. 2021. "Prescribing in a paediatric emergency: A PERUKI survey of prescribing and resuscitation aids." Acta Paediatrica. 110 (3), pp. 1038-1045. https://doi.org/10.1111/apa.15551
Experimental and numerical heat transfer from vortex-injection interaction in scramjet flowfields
Llobet, J.R., Basore, K.D., Gollan, R.J. and Jahn, I.H.. 2020. "Experimental and numerical heat transfer from vortex-injection interaction in scramjet flowfields ." Aeronautical Journal. 124 (1280), pp. 1545-1567. https://doi.org/10.1017/aer.2020.39
Mobile device and app use in paediatric emergency care: a survey of departmental practice in the UK and Ireland
Jahn, Haiko Kurt, Jahn, Ingo H, Roland, Damian, Lyttle, Mark D, Behringer, Wilhelm and Paediatric Emergency Research in the United Kingdom. 2019. "Mobile device and app use in paediatric emergency care: a survey of departmental practice in the UK and Ireland." Archives of Disease in Childhood. 104 (12), pp. 1203-1207. https://doi.org/10.1136/archdischild-2019-316872
Simulation in the Loop Control of a Planar Hypersonic Wing with a Rigid Control Surface
Jahn, I. H., Zander, F., Stern, N. and Buttsworth, D. R.. 2018. "Simulation in the Loop Control of a Planar Hypersonic Wing with a Rigid Control Surface." 21st Australasian Fluid Mechanics Conference (AFMC 2018). Adelaide, Australia 10 - 13 Dec 2018 Australia.
Impulse facilities for the simulation of hypersonic radiating flows
Morgan, R. G., McIntyre, T. J., Buttsworth, D. R., Jacobs, P. A., Potter, D. F., Brandis, A. M., Gollan, R. J., Jacobs, C. M., Capra, B. R., McGilvray, M. and Eichmann, T. N.. 2008. "Impulse facilities for the simulation of hypersonic radiating flows ." 38th AIAA Fluid Dynamics Conference and Exhibit (AIAA 2008). Seattle, United States 23 - 26 Jun 2008 Reston, VA. United States.
Impulse facility simulation of hypervelocity radiating flows
Morgan, R. G., McIntyre, T. J., Jacobs, P. A., Buttsworth, D. R., Macrossan, M. N., Gollan, R. J., Capra, B. R., Brandis, A. M., Potter, D., Eichmann, T., Jacobs, C. M., McGilvray, M., van Diem, D. and Scott, M. P.. 2006. "Impulse facility simulation of hypervelocity radiating flows." 2nd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry. Rome, Italy 06 - 08 Sep 2006 Noordwijk, Netherlands.