Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS‑CoV‑2 infections and drug repurposing

Article


Mosharaf, Md. Parvez, Reza, Md. Selim, Kibria, Md. Kaderi, Ahmed, Fee Faysal, Kabir, Md. Hadiul, Hasan, Sohel and Mollah, Md. Nurul Haque. 2022. "Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS‑CoV‑2 infections and drug repurposing." Scientific Reports. 12 (1). https://doi.org/10.1038/s41598-022-08073-8
Article Title

Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS‑CoV‑2 infections and drug repurposing

ERA Journal ID201487
Article CategoryArticle
AuthorsMosharaf, Md. Parvez, Reza, Md. Selim, Kibria, Md. Kaderi, Ahmed, Fee Faysal, Kabir, Md. Hadiul, Hasan, Sohel and Mollah, Md. Nurul Haque
Journal TitleScientific Reports
Journal Citation12 (1)
Article Number4279
Number of Pages22
Year2022
PublisherNature Publishing Group
Place of PublicationUnited Kingdom
ISSN2045-2322
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-022-08073-8
Web Address (URL)https://www.nature.com/articles/s41598-022-08073-8
Abstract

The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.

KeywordsCase-Control Studies; COVID-19; Drug Repositioning; Gene Regulatory Networks; Genetic Markers; Humans; Molecular Docking Simulation; Protein Interaction Maps; SARS-CoV-2
Contains Sensitive ContentDoes not contain sensitive content
FunderMissouri University of Science and Technology
Byline AffiliationsUniversity of Rajshahi, Bangladesh
School of Business
Jashore University of Science and Technology, Bangladesh
Permalink -

https://research.usq.edu.au/item/yy7qw/computational-identification-of-host-genomic-biomarkers-highlighting-their-functions-pathways-and-regulators-that-influence-sars-cov-2-infections-and-drug-repurposing

Download files


Published Version
s41598-022-08073-8.pdf
License: CC BY 4.0
File access level: Anyone

  • 34
    total views
  • 75
    total downloads
  • 0
    views this month
  • 4
    downloads this month

Export as

Related outputs

Common molecular and pathophysiological underpinnings of delirium and Alzheimer’s disease: Molecular signatures and therapeutic indications
Alam, Khorshed, Mosharaf, Md Parvez, Gow, Jeff, Mahumud, Rashidul Alam and Mollah, Md Nurul Haque. 2024. "Common molecular and pathophysiological underpinnings of delirium and Alzheimer’s disease: Molecular signatures and therapeutic indications." BMC Geriatrics. 24. https://doi.org/10.1186/s12877-024-05289-3
Exploration of key drug target proteins highlighting their related regulatory molecules, functional pathways and drug candidates associated with delirium: evidence from meta-data analyses
Mosharaf, Md Parvez, Alam, Khorshed, Gow, Jeff and Mahumud, Rashidul Alam. 2023. "Exploration of key drug target proteins highlighting their related regulatory molecules, functional pathways and drug candidates associated with delirium: evidence from meta-data analyses." BMC Geriatrics. 23. https://doi.org/10.1186/s12877-023-04457-1
Effect of workplace violence on health workers injuries and workplace absenteeism in Bangladesh
Shahjalal, Md., Mosharaf, Md. Parvez and Mahumud, Rashidul Alam. 2023. "Effect of workplace violence on health workers injuries and workplace absenteeism in Bangladesh." Global Health Research and Policy. 8 (1). https://doi.org/10.1186/s41256-023-00316-z
Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing
Islam, Md. Ariful, Kibria, Md. Kaderi, Hossen, Md. Bayazid, Reza, Md. Selim, Tasmia, Samme Amena, Tuly, Khanis Farhana, Mosharof, Md. Parvez, Kabir, Syed Rashel, Kabir, Md. Hadiul, Mollah, Md. Nurul Haque and Mosharof, P.. 2023. "Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing." Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-31276-6
The burden of chronic diseases, disease-stratified exploration and gender-differentiated healthcare utilisation among patients in Bangladesh
Mahumud, Rashidul Alam, Gow, Jeff, Mosharaf, Md Parvez, Kundu, Satyajit, Rahman, Md Ashfikur, Dukhi, Natisha, Shahajalal, Md, Mistry, Sabuj Kanti and Alam, Khorshed. 2023. "The burden of chronic diseases, disease-stratified exploration and gender-differentiated healthcare utilisation among patients in Bangladesh." PLoS One. 18 (5). https://doi.org/10.1371/journal.pone.0284117
Hospital costs of post-operative delirium: A systematic review
Mosharaf, Md. Parvez, Alam, Khorshed, Ralph, Nicholas and Gow, Jeff. 2022. "Hospital costs of post-operative delirium: A systematic review." Journal of Perioperative Nursing. 35 (2), pp. 14-26. https://doi.org/10.26550/2209-1092.1165
Meta-Data Analysis to Explore the Hub of the Hub-Genes That Influence SARS-CoV-2 Infections Highlighting Their Pathogenetic Processes and Drugs Repurposing
Mosharaf, Md. Parvez, Kibria, Md. Kaderi, Hossen, Md. Bayazid, Islam, Md. Ariful, Reza, Md. Selim, Mahumud, Rashidul Alam, Alam, Khorshed, Gow, Jeffrey and Mollah, Md. Nurul Haque. 2022. "Meta-Data Analysis to Explore the Hub of the Hub-Genes That Influence SARS-CoV-2 Infections Highlighting Their Pathogenetic Processes and Drugs Repurposing." Vaccines. 10 (8), pp. 1-22. https://doi.org/10.3390/vaccines10081248
Comprehensive In Silico Analysis of RNA Silencing-Related Genes and Their Regulatory Elements in Wheat (Triticum aestivum L.)
Akond, Zobaer, Rahman, Hafizur, Ahsan, Md. Asif, Mosharaf, Md. Parvez, Alam, Munirul and Mollah, Md. Nurul Haque. 2022. "Comprehensive In Silico Analysis of RNA Silencing-Related Genes and Their Regulatory Elements in Wheat (Triticum aestivum L.)." BioMed Research International. 2022. https://doi.org/10.1155/2022/4955209
Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches
Ahmed, Fee Faysal, Reza, Md. Selim, Sarker, Md. Shahin, Islam, Md. Samiul, Mosharaf, Md. Parvez, Hasan, Sohel and Mollah, Md. Nurul Haque. 2022. "Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches." PLoS One. 17 (4 April). https://doi.org/10.1371/journal.pone.0266124
Disclosing Potential Key Genes, Therapeutic Targets and Agents for Non-Small Cell Lung Cancer: Evidence from Integrative Bioinformatics Analysis
Mosharaf, Md. Parvez, Reza, Md. Selim, Gov, Esra, Mahumud, Rashidul Alam and Mollah, Md. Nurul Haque. 2022. "Disclosing Potential Key Genes, Therapeutic Targets and Agents for Non-Small Cell Lung Cancer: Evidence from Integrative Bioinformatics Analysis." Vaccines. 10 (5). https://doi.org/10.3390/vaccines10050771
Prediction of Protein-protein Interactions in Arabidopsis thaliana Using Partial Training Samples in a Machine Learning Framework
Ahmed, Fee Faysal, Khatun, Mst. Shamima, Mosharaf, Md. Parvez and Mollah, Md. Nurul Haque. 2021. "Prediction of Protein-protein Interactions in Arabidopsis thaliana Using Partial Training Samples in a Machine Learning Framework." Current Bioinformatics. 16 (6), pp. 865-879. https://doi.org/10.2174/1574893616666210204145254
Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana
Mosharaf, Md. Parvez, Hassan, Md. Mehedi, Ahmed, Fee Faysal, Khatun, Mst. Shamima, Moni, Mohammad Ali and Mollah, Md. Nurul Haque. 2020. "Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana." Computational Biology and Chemistry. 85. https://doi.org/10.1016/j.compbiolchem.2020.107238
In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.)
Mosharaf, Md. Parvez, Rahman, Hafizur, Ahsan, Md. Asif, Akond, Zobaer, Ahmed, Fee Faysal, Islam, Md. Mazharul, Moni, Mohammad Ali and Mollah, Md. Nurul Haque. 2020. "In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.)." PLoS One. 15 (12 December). https://doi.org/10.1371/journal.pone.0228233