An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse
Article
Article Title | An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse |
---|---|
ERA Journal ID | 213962 |
Article Category | Article |
Authors | Sharma, Neelesh, Banerjee, Bikram Pratap, Hayden, Matthew and Kant, Surya |
Journal Title | Plants |
Journal Citation | 12 (2) |
Article Number | 317 |
Number of Pages | 19 |
Year | 2023 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 2223-7747 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/plants12020317 |
Web Address (URL) | https://www.mdpi.com/2223-7747/12/2/317 |
Abstract | Advanced plant phenotyping techniques to measure biophysical traits of crops are helping to deliver improved crop varieties faster. Phenotyping of plants using different sensors for image acquisition and its analysis with novel computational algorithms are increasingly being adapted to measure plant traits. Thermal and multispectral imagery provides novel opportunities to reliably phenotype crop genotypes tested for biotic and abiotic stresses under glasshouse conditions. However, optimization for image acquisition, pre-processing, and analysis is required to correct for optical distortion, image co-registration, radiometric rescaling, and illumination correction. This study provides a computational pipeline that optimizes these issues and synchronizes image acquisition from thermal and multispectral sensors. The image processing pipeline provides a processed stacked image comprising RGB, green, red, NIR, red edge, and thermal, containing only the pixels present in the object of interest, e.g., plant canopy. These multimodal outputs in thermal and multispectral imageries of the plants can be compared and analysed mutually to provide complementary insights and develop vegetative indices effectively. This study offers digital platform and analytics to monitor early symptoms of biotic and abiotic stresses and to screen a large number of genotypes for improved growth and productivity. The pipeline is packaged as open source and is hosted online so that it can be utilized by researchers working with similar sensors for crop phenotyping. |
Keywords | co-registration; illumination correction; image processing; multispectral; segmentation; thermal |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 309999. Other agricultural, veterinary and food sciences not elsewhere classified |
400999. Electronics, sensors and digital hardware not elsewhere classified | |
Byline Affiliations | Agriculture Victoria |
La Trobe University |
https://research.usq.edu.au/item/z307y/an-open-source-package-for-thermal-and-multispectral-image-analysis-for-plants-in-glasshouse
Download files
56
total views120
total downloads0
views this month0
downloads this month