The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen

Article


Kunz, Lukas, Sotiropoulos, Alexandros G., Graf, Johannes, Razavi, Mohammad, Keller, Beat and Müller, Marion C.. 2023. "The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen." BMC Biology. 21 (1), p. 29. https://doi.org/10.1186/s12915-023-01513-5
Article Title

The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen

ERA Journal ID37245
Article CategoryArticle
AuthorsKunz, Lukas, Sotiropoulos, Alexandros G., Graf, Johannes, Razavi, Mohammad, Keller, Beat and Müller, Marion C.
Journal TitleBMC Biology
Journal Citation21 (1), p. 29
Number of Pages2915
Year2023
PublisherBioMed Central Ltd.
Place of PublicationUnited Kingdom
ISSN1741-7007
Digital Object Identifier (DOI)https://doi.org/10.1186/s12915-023-01513-5
Web Address (URL)https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-023-01513-5
Abstract

Background
Worldwide wheat production is under constant threat by fast-evolving fungal pathogens. In the last decades, wheat breeding for disease resistance heavily relied on the introgression of chromosomal segments from related species as genetic sources of new resistance. The Pm8 resistance gene against the powdery mildew disease has been introgressed from rye into wheat as part of a large 1BL.1RS chromosomal translocation encompassing multiple disease resistance genes and yield components. Due to its high agronomic value, this translocation has seen continuous global use since the 1960s on large growth areas, even after Pm8 resistance was overcome by the powdery mildew pathogen. The long-term use of Pm8 at a global scale provided the unique opportunity to study the consequences of such extensive resistance gene application on pathogen evolution.

Results
Using genome-wide association studies in a population of wheat mildew isolates, we identified the avirulence effector AvrPm8 specifically recognized by Pm8. Haplovariant mining in a global mildew population covering all major wheat growing areas of the world revealed 17 virulent haplotypes of the AvrPm8 gene that grouped into two functional categories. The first one comprised amino acid polymorphisms at a single position along the AvrPm8 protein, which we confirmed to be crucial for the recognition by Pm8. The second category consisted of numerous destructive mutations to the AvrPm8 open reading frame such as disruptions of the start codon, gene truncations, gene deletions, and interference with mRNA splicing. With the exception of a single, likely ancient, gain-of-virulence mutation found in mildew isolates around the world, all AvrPm8 virulence haplotypes were found in geographically restricted regions, indicating that they occurred recently as a consequence of the frequent Pm8 use.

Conclusions
In this study, we show that the broad and prolonged use of the Pm8 gene in wheat production worldwide resulted in a multitude of gain-of-virulence mechanisms affecting the AvrPm8 gene in the wheat powdery mildew pathogen. Based on our findings, we conclude that both standing genetic variation as well as locally occurring new mutations contributed to the global breakdown of the Pm8 resistance gene introgression.

KeywordsPowdery mildew; Gain-of-virulence; Avirulence gene; Resistance introgression; Blumeria graminis; Wheat
ANZSRC Field of Research 2020310407. Host-parasite interactions
310510. Molecular evolution
310899. Plant biology not elsewhere classified
Byline AffiliationsUniversity of Zurich, Switzerland
Iranian Research Institute of Plant Protection
Permalink -

https://research.usq.edu.au/item/z33ww/the-broad-use-of-the-pm8-resistance-gene-in-wheat-resulted-in-hypermutation-of-the-avrpm8-gene-in-the-powdery-mildew-pathogen

  • 12
    total views
  • 13
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma
Megremis, Spyridon, Constantinides, Bede, Xepapadaki, Paraskevi, Yap, Chuan Fu, Sotiropoulos, Alexandros G., Bachert, Claus, Finotto, Susetta, Jartti, Tuomas, Tapinos, Avraam, Vuorinen, Tytti, Andreakos, Evangelos, Robertson, David L. and Papadopoulos, Nikolaos G.. 2023. "Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma." Scientific Reports. 13 (1). https://doi.org/10.1038/s41598-023-34730-7
A survey of lineage‐specific genes in Triticeae reveals de novo gene evolution from genomic raw material
Poretti, Manuel, Praz, Coraline R, Sotiropoulos, Alexandros G. and Wicker, Thomas. 2023. "A survey of lineage‐specific genes in Triticeae reveals de novo gene evolution from genomic raw material." Plant Direct. 7 (3), p. e484. https://doi.org/10.1002/pld3.484
Mutagenesis of wheat powdery mildew reveals a single gene controlling both NLR and tandem kinase-mediated immunity
Bernasconi, Zoe, Stirnemann, Ursin, Heuberger, Matthias, Sotiropoulos, Alexandros, Graf, Johannes, Wicker, Thomas, Keller, Beat and Sánchez-Martín, Javier. 2023. "Mutagenesis of wheat powdery mildew reveals a single gene controlling both NLR and tandem kinase-mediated immunity." Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-09-23-0136-FI
Transposable element populations shed light on the evolutionary history of wheat and the complex co‐evolution of autonomous and non‐autonomous retrotransposons
Wicker, Thomas, Stritt, Christoph, Sotiropoulos, Alexandros G, Poretti, Manuel, Pozniak, Curtis, Walkowiak, Sean, Gundlach, Heidrun and Stein, Nils. 2022. "Transposable element populations shed light on the evolutionary history of wheat and the complex co‐evolution of autonomous and non‐autonomous retrotransposons." Advanced Genetics. 3 (1). https://doi.org/10.1002/ggn2.202100022
A fictional field case study to understand the genetic basis of host-fungal pathogen interactions using the wheat powdery mildew-wheat pathosystem
Sotiropoulos, Alexandros G., Sánchez-Martín, Javier, Widrig, Victoria, Isaksson, Jonatan, Bernasconi, Zoe, Koller, Teresa, Bearth, Giulia, Herren, Gerhard, Wicker, Thomas and Keller, Beat. 2022. "A fictional field case study to understand the genetic basis of host-fungal pathogen interactions using the wheat powdery mildew-wheat pathosystem." Journal of Biological Education. https://doi.org/10.1080/00219266.2022.2147574
Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade
Sotiropoulos, Alexandros G, Arango-Isaza, Epifanía, Ban, Tomohiro, Barbieri, Chiara, Bourras, Salim, Cowger, Christina, Czembor, Paweł C., Ben-David, Roi, Dinoor, Amos, Ellwood, Simon R., Graf, Johannes, Hatta, Koichi, Helguera, Marcelo, Sánchez-Martín, Javier, McDonald, Bruce A., Morgounov, Alexey I., Müller, Marion C., Shamanin, Vladimir, Shimizu, Kentaro K., ..., Wicker, Thomas. 2022. "Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade." Nature Communications. 13 (1). https://doi.org/10.1038/s41467-022-31975-0
Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat
Müller, Marion C., Kunz, Lukas, Schudel, Seraina, Lawson, Aaron W., Kammerecker, Sandrine, Isaksson, Jonatan, Wyler, Michele, Graf, Johannes, Sotiropoulos, Alexandro G.s, Praz, Coraline R., Manser, Beatrice, Wicker, Thomas, Bourras, Salim and Keller, Beat. 2022. "Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat." Proceedings of the National Academy of Sciences (PNAS). 119 (30). https://doi.org/10.1073/pnas.2108808119
A global analysis of matches and mismatches between human genetic and linguistic histories
Barbieri, Chiara, Blasi, Damian E., Arango-Isaza, Epifania, Sotiropoulos, Alexandros G., Hammarstrom, Harald, Wichmann, Soren, Greenhill, Simon J., Gray, Russell D., Forkel, Robert, Bickel, Balthasar and Shimizu, Kentaro K.. 2022. "A global analysis of matches and mismatches between human genetic and linguistic histories." Proceedings of the National Academy of Sciences (PNAS). 119 (47), p. e2122084119. https://doi.org/10.1073/pnas.2122084119
Comparative transcriptome analysis of wheat lines in the field reveals multiple essential biochemical pathways suppressed by obligate pathogens
Poretti, Manuel, Sotiropoulos, Alexandros G., Graf, Johannes, Jung, Esther, Bourras, Salim, Krattinger, Simon G. and Wicker, Thomas. 2021. "Comparative transcriptome analysis of wheat lines in the field reveals multiple essential biochemical pathways suppressed by obligate pathogens." Frontiers in Plant Science. 12. https://doi.org/10.3389/fpls.2021.720462
Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera
Oeyen, Jan Philip, Baa-Puyoulet, Patrice, Benoit, Joshua B., Beukeboom, Leo W., Bornberg-Bauer, Erich, Buttstedt, Anja, Calevro, Federica, Cash, Elizabeth I., Chao, Hsu, Charles, Hubert, Chen, Mei-Ju May, Childers, Christopher, Cridge, Andrew G., Dearden, Peter, Dinh, Huyen, Doddapaneni, Harsha V., Dolan, Amanda, Donath, Alexander, Dowling, Daniel, ..., Niehuis, O.. 2020. "Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera." Genome Biology and Evolution. 12 (7), pp. 1099-1188. https://doi.org/10.1093/gbe/evaa106
A chromosome‐scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew
Müller, Marion C., Praz, Coraline R., Sotiropoulos, Alexandros G., Menardo, Fabrizio, Kunz, Lukas, Schudel, Seraina, Oberhänsli, Simone, Poretti, Manuel, Wehrli, Andreas and Bourras, Salim. 2019. "A chromosome‐scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew." New Phytologist. 221 (4), pp. 2176-2189. https://doi.org/10.1111/nph.15529