Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium

Article


Zhang, Xueqin, Zhao, Jing, Erler, Dirk V., Rabiee, Hesamoddin, Kong, Zheng, Wang, Suicao, Wang, Zhiyao, Virdis, Bernardino, Yuan, Zhiguo and Hu, Shihu. 2024. "Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium." Journal of Environmental Management. 365. https://doi.org/10.1016/j.jenvman.2024.121523
Article Title

Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium

ERA Journal ID5850
Article CategoryArticle
AuthorsZhang, Xueqin, Zhao, Jing, Erler, Dirk V., Rabiee, Hesamoddin, Kong, Zheng, Wang, Suicao, Wang, Zhiyao, Virdis, Bernardino, Yuan, Zhiguo and Hu, Shihu
Journal TitleJournal of Environmental Management
Journal Citation365
Article Number121523
Number of Pages11
Year2024
PublisherElsevier
Place of PublicationNetherlands
ISSN0301-4797
1093-0191
1095-8630
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jenvman.2024.121523
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0301479724015093
AbstractAnaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a ‘Candidatus Methanoperedens nitroreducens’-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of ‘Ca. M. nitroreducens’ for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.
KeywordsAnaerobic oxidation of methane (AOM); Extracellular polymeric substances (EPS) ; Methanotrophic consortium ; Extracellular electron transfer
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 2020410404. Environmental management
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsUniversity of Queensland
Southern Cross University
Centre for Future Materials
University of Hong Kong, China
Permalink -

https://research.usq.edu.au/item/z85xq/characterization-of-the-redox-active-extracellular-polymeric-substances-in-an-anaerobic-methanotrophic-consortium

  • 8
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Revelling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
Liao, Zijia, Rabiee, Hesamoddin, Ge, Lei, Li, Xiaogang, Yang, Zhaozhong, Xue, Qi, Shen, Chao and Wang, Hao. 2025. "Revelling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method." Journal of Materials Science and Technology. 211, pp. 72-81. https://doi.org/10.1016/j.jmst.2024.05.054
Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO2 Availability for High-Rate and Selective CO2 Electroreduction to Ethylene
Rabiee, Hesamoddin, Li, Mengran, Yan, Penghui, Wu, Yuming, Zhang, Xueqin, Dorosti, Fatereh, Zhang, Xi, Ma, Beibei, Hu, Shihu, Wang, Hao, Zhu, Zhonghua and Ge, Lei. 2024. "Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO2 Availability for High-Rate and Selective CO2 Electroreduction to Ethylene." Advanced Science. https://doi.org/10.1002/advs.202402964
In Situ Growth of Hierarchical Silver Sub‐Nanosheets on Zinc Nanosheets‐Based Hollow Fiber Gas‐Diffusion Electrodes for Electrochemical CO2 Reduction to CO
Chen, Guoliang, Ge, Lei, Kuang, Yizhu, Rabiee, Hesamoddin, Ma, Beibei, Dorosti, Fatereh, Nanjundan, Ashok Kumar, Zhu, Zhonghua and Wang, Hao. 2024. "In Situ Growth of Hierarchical Silver Sub‐Nanosheets on Zinc Nanosheets‐Based Hollow Fiber Gas‐Diffusion Electrodes for Electrochemical CO2 Reduction to CO." Small Science. https://doi.org/10.1002/smsc.202400184
Impact of varied zeolite materials on nickel catalysts in CO2 methanation
Yan, Penghui, Peng, Hong, Wu, Xuankun, Rabiee, Hesamoddin, Weng, Yilun, Konarova, Muxina, Vogrin, John, Rozhkovskaya, Alexandra and Zhu, Zhonghua. 2024. "Impact of varied zeolite materials on nickel catalysts in CO2 methanation." Journal of Catalysis. 432. https://doi.org/10.1016/j.jcat.2024.115439
Insights into electrolyte flooding in flexible gas diffusion electrodes for CO2 electrolysis: from mechanisms to effective mitigation strategies
Wu, Yuming, Rabiee, Hesamoddin, Zhao, Xiu Song, Wang, Geoff and Jiang, Yijiao. 2024. "Insights into electrolyte flooding in flexible gas diffusion electrodes for CO2 electrolysis: from mechanisms to effective mitigation strategies." Journal of Materials Chemistry A. 12 (24), pp. 14206-14228. https://doi.org/10.1039/d4ta01994f
Toward High Performance Mixed Ionic and Electronic Conducting Perovskite-Based Oxygen Permeable Membranes: An Overview of Strategies and Rationales
Zhao, Jing, Pang, Yingping, Su, Chao, Jiang, Shanshan and Ge, Lei. 2023. "Toward High Performance Mixed Ionic and Electronic Conducting Perovskite-Based Oxygen Permeable Membranes: An Overview of Strategies and Rationales." Energy and Fuels. 37 (10), pp. 7042-7061. https://doi.org/10.1021/acs.energyfuels.3c00745
Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’
Zhang, Xueqin, Joyce, Georgina H., Leu, Andy O., Zhao, Jing, Rabiee, Hesamoddin, Virdis, Bernardino, Tyson, Gene W., Yuan, Zhiguo, McIlroy, Simon J. and Hu, Shihu. 2023. "Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’." Nature Communications. 14 (1). https://doi.org/10.1038/s41467-023-41847-w
Design and analysis of a low-cost potentiostat for application with microbial electrochemical sensors
Hill, Andrew, Tait, Stephan, Harris, Peter, Baillie, Craig, Virdis, Bernardino and McCabe, Bernadette K.. 2023. "Design and analysis of a low-cost potentiostat for application with microbial electrochemical sensors." Electrochimica Acta. 468. https://doi.org/10.1016/j.electacta.2023.143201
Tuning Flow-through Cu-based Hollow Fiber Gas-diffusion Electrode for High-efficiency Carbon Monoxide (CO) Electroreduction to C2+ products
Rabiee, Hesamoddin, Heffernan, James K., Ge, Lei, Zhang, Xueqin, Yan, Penghui, Marcellin, Esteban, Hu, Shihu, Zhu, Zhonghua, Wang, Hao and Yuan, Zhiguo. 2023. "Tuning Flow-through Cu-based Hollow Fiber Gas-diffusion Electrode for High-efficiency Carbon Monoxide (CO) Electroreduction to C2+ products." Applied Catalysis B: Environment and Energy. 330, p. 122589. https://doi.org/10.1016/j.apcatb.2023.122589
High‐concentration electrosynthesis of formic acid/formate from CO2: reactor and electrode design strategies
Kuang, Yizhu, Rabiee,Hesamoddin, Ge, Lei, Rufford, Thomas E., Yuan, Zhiguo, Bell, John and Wang, Hao. 2023. "High‐concentration electrosynthesis of formic acid/formate from CO2: reactor and electrode design strategies." Energy and Environmental Materials. https://doi.org/10.1002/eem2.12596
Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers
Rabiee, Hesamoddin, Ge, Lei, Zhao, Jing, Zhang, Xueqin, Li, Mengran, Hu, Shihu, Smart, Simon, Rufford, Thomas E., Zhu, Zhonghua, Wang, Hao and Yuan, Zhiguo. 2022. "Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers." Applied Catalysis B: Environment and Energy. 310, pp. 1-11. https://doi.org/10.1016/j.apcatb.2022.121362
Microtubular electrodes: An emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications
Rabiee, Hesamoddin, Ge, Lei, Hu, Shihu, Wang, Hao and Yuan, Zhiguo. 2022. "Microtubular electrodes: An emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications." Chemical Engineering Journal. 450 (Part 1). https://doi.org/10.1016/j.cej.2022.138476
Breakage and growth towards a stable aerobic granule size during the treatment of wastewater
Verawaty, Marieska, Tait, Stephan, Pijuan, Maite, Yuan, Zhiguo and Bond, Philip L.. 2013. "Breakage and growth towards a stable aerobic granule size during the treatment of wastewater." Water Research. 47 (14), pp. 5338-5349. https://doi.org/10.1016/j.watres.2013.06.012
Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction
Rabiee, Hesamoddin, Ge, Lei, Zhang, Xueqin, Hu, Shihu, Li, Mengran, Smart, Simon, Zhu, Zhonghua, Wang, Hao and Yuan, Zhiguo. 2021. "Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction." Applied Catalysis B: Environment and Energy. 298, pp. 1-11. https://doi.org/10.1016/j.apcatb.2021.120538
Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review
Rabiee, Hesamoddin, Ge, Lei, Zhang, Xueqin, Hu, Shihu, Li, Mengran and Yuan, Zhiguo. 2021. "Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review." Energy and Environmental Science. 14 (4), pp. 1959-2008. https://doi.org/10.1039/D0EE03756G
Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate
Rabiee, Hesamoddin, Ge, Lei, Zhang, Xueqin, Hu, Shihu, Li, Mengran, Smart, Simon, Zhu, Zhonghua and Yuan, Zhiguo. 2021. "Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate." Applied Catalysis B: Environment and Energy. 286, pp. 1-12. https://doi.org/10.1016/j.apcatb.2021.119945
Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO2 Reduction to Formate by Controlled Surface Sn Electrodeposition
Rabiee, Hesamoddin, Zhang, Xueqin, Ge, Lei, Hu, Shihu, Li, Mengran, Smart, Simon, Zhu, Zhonghua and Yuan, Zhiguo. 2020. "Tuning the Product Selectivity of the Cu Hollow Fiber Gas Diffusion Electrode for Efficient CO2 Reduction to Formate by Controlled Surface Sn Electrodeposition." ACS Applied Materials and Interfaces. 12 (19), pp. 21670-21681. https://doi.org/10.1021/acsami.0c03681
Microbial electrochemical sensors for volatile fatty acid measurement in high strength wastewaters: A review
Hill, Andrew, Tait, Stephan, Baillie, Craig, Virdis, Bernardino and McCabe, Bernadette. 2020. "Microbial electrochemical sensors for volatile fatty acid measurement in high strength wastewaters: A review ." Biosensors and Bioelectronics. 165. https://doi.org/10.1016/j.bios.2020.112409