Supercapacitors: Materials, Design, and Commercialization

Edited book


Krishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P.. Krishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P. (ed.) 2024. Supercapacitors: Materials, Design, and Commercialization. Elsevier.
Book Title

Supercapacitors: Materials, Design, and Commercialization

Book CategoryEdited book
AuthorsKrishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P.
EditorsKrishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P.
Number of Pages417
Year2024
PublisherElsevier
ISBN9780443154782
Digital Object Identifier (DOI)https://doi.org/10.1016/C2022-0-01715-3
Web Address (URL)https://www.sciencedirect.com/book/9780443154782/supercapacitors?via=ihub=
AbstractSupercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, particularly in terms of novel materials and electrolytes. The book addresses the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, various polymer nanocomposites, and polyoxometalates for supercapacitors. This is followed by in-depth coverage of electrolytes, including the evolution of electrolytes from aqueous to water-in-salt electrolytes and their role in improving the energy density of supercapacitors. The final part of the book examines the role of artificial intelligence in the design of supercapacitors, and latest developments in translating novel supercapacitor technologies from laboratory-scale research to a commercialization. © 2024 Elsevier Inc. All rights are reserved including those for text and data mining AI training and similar technologies.
Contains Sensitive ContentDoes not contain sensitive content
Public Notes

There are no files associated with this item.

Byline AffiliationsUniversity of Melbourne
Centre for Future Materials
Queensland University of Technology
Permalink -

https://research.usq.edu.au/item/z8622/supercapacitors-materials-design-and-commercialization

  • 35
    total views
  • 0
    total downloads
  • 8
    views this month
  • 0
    downloads this month

Export as

Related outputs

Deep eutectic solvents as green and cost-effective supercapacitor electrolytes
Padwal, Chinmayee, Pham, Hong Duc, Hoang, Linh Thi My, Mundree, Sagadevan and Dubal, Deepak P.. 2024. "Deep eutectic solvents as green and cost-effective supercapacitor electrolytes." Krishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P. (ed.) Supercapacitors: Materials, Design, and Commercialization. Elsevier. pp. 317-329
Introduction to supercapacitors, materials and design
Krishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P.. 2024. "Introduction to supercapacitors, materials and design." Krishnan, Syam G., Pham, Hong Duc and Dubal, Deepak P. (ed.) Supercapacitors: Materials, Design, and Commercialization. Elsevier. pp. 1-16
Understanding the Solid-Electrolyte-Interface (SEI) Formation in Glyme Electrolyte Using Time-Of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)
Padwal, Chinmayee, Pham, Hong Duc, Hoang, Linh Thi My, Mundree, Sagadevan, Nanjundan, Ashok Kumar, Krishnan, Syam G. and Dubal, Deepak. 2024. "Understanding the Solid-Electrolyte-Interface (SEI) Formation in Glyme Electrolyte Using Time-Of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)." ChemSusChem: chemistry and sustainability, energy and materials. https://doi.org/10.1002/cssc.202301866
Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications
Abazari, Reza, Sanati, Soheila, Nanjundan, Ashok Kumar, Wan, Qiyou, Dubal, Deepak P. and Liu, Min. 2024. "Structure-property-performance relationship of vanadium- and manganese-based metal-organic frameworks and their derivatives for energy storage and conversion applications." Journal of Materials Chemistry A. 12 (19), pp. 11149-11175. https://doi.org/10.1039/d4ta00736k
Design and Advanced Manufacturing of NU-1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications
Abazari, Reza, Sanati, Soheila, Bajaber, Majed A., Javed, Muhammad Sufyan, Junk, Peter C., Nanjundan, Ashok Kumar, Qian, Jinjie and Dubal, Deepak P.. 2024. "Design and Advanced Manufacturing of NU-1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications." Small. 20 (15). https://doi.org/10.1002/smll.202306353
Upcycling of nickel oxide from spent Ni-MH batteries as ultra-high capacity and stable Li-based energy storage devices
Pham, Hong Duc, Krishnan, Syam G., Wang, Tony, Fernando, Joseph F.S., Padwal, Chinmayee, Golberg, Dmitri V. and Dubal, Deepak P.. 2023. "Upcycling of nickel oxide from spent Ni-MH batteries as ultra-high capacity and stable Li-based energy storage devices." Sustainable Materials and Technologies. 36, p. e00602. https://doi.org/10.1016/j.susmat.2023.e00602
Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries
Tung, Tran Thanh, Moussa, Mahmoud, Tripathi, Kumud Malika, Kim, TaeYoung, Nine, Md Julker, Nanjundan, Ashok Kumar, Dubal, Deepak and Losic, Dusan. 2022. "Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries." Sustainable Materials and Technologies. 32. https://doi.org/10.1016/j.susmat.2022.e00393
Deep Eutectic Solvents: Green Approach for Cathode Recycling of Li-Ion Batteries
Padwal, Chinmayee, Pham, Hong Duc, Jadhav, Sagar, Do, Thu Trang, Nerkar, Jawahar, Hoang, Linh Thi My, Nanjundan, Ashok Kumar, Mundree, Sagadevan G. and Dubal, Deepak P.. 2022. "Deep Eutectic Solvents: Green Approach for Cathode Recycling of Li-Ion Batteries." Advanced Energy and Sustainability Research. 3 (1). https://doi.org/10.1002/aesr.202100133
Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies
Jayaramulu, Kolleboyina, Mukherjee, Soumya, Morales, Dulce M., Dubal, Deepak P., Nanjundan, Ashok Kumar, Schneemann, Andreas, Masa, Justus, Kment, Stepan, Schuhmann, Wolfgang, Otyepka, Michal, Zbořil, Radek and Fischer, Roland A.. 2022. "Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies." Chemical Reviews. 122 (24), pp. 17241-17338. https://doi.org/10.1021/acs.chemrev.2c00270
An Overview of Cellulose-Based Nanogenerators
Annamalai, Pratheep K., Nanjundan, Ashok Kumar, Dubal, Deepak P. and Baek, Jong-Beom. 2021. "An Overview of Cellulose-Based Nanogenerators." Advanced Materials Technologies. 6 (3). https://doi.org/10.1002/admt.202001164
Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor
Pham, Hong Duc, Fernando, Joseph F.S., Horn, Michael, MacLeod, Jennifer, Motta, Nunzio, Doherty, William O.S., Payne, Alice, Nanjundan, Ashok Kumar, Golberg, Dmitri and Dalal, Deepak. 2021. "Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor." Electrochimica Acta. 389. https://doi.org/10.1016/j.electacta.2021.138717
Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor
Pham, Hong Duc, Chodankar, Nilesh R., Jadhav, Sagar D., Jayaramulu, Kolleboyina, Nanjundan, Ashok Kumar and Dubal, Deepak P.. 2021. "Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor." Energy Storage Materials. 34, pp. 475-482. https://doi.org/10.1016/j.ensm.2020.10.013
Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia
Majumder, Mandira, Saini, Haneesh, Dědek, Ivan, Schneemann, Andreas, Chodankar, Nilesh R., Ramarao, Viswanatha, Santosh, Mysore Sridhar, Nanjundan, Ashok Kumar, Kment, Štěpán, Dubal, Deepak, Otyepka, Michal, Zbořil, Radek and Jayaramulu, Kolleboyina. 2021. "Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia." ACS Nano. 15 (11), pp. 17275-17298. https://doi.org/10.1021/acsnano.1c08455
Dual Carbon Potassium-Ion Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes
Pham, Hong Duc, Mahale, Kiran, Hoang, Thi My Linh, Mundree, Sagadevan G., Gomez-Romero, Pedro and Dubal, Deepak P.. 2020. "Dual Carbon Potassium-Ion Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes." ACS Applied Materials and Interfaces. 12 (43), pp. 48518-48525. https://doi.org/10.1021/acsami.0c12379
Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthalimide and fluorenone building blocks
Do, Thu Trang, Pham, Hong Duc, Manzhos, Sergei, Bell, John M and Sonar, Prashant. 2017. "Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthalimide and fluorenone building blocks." ACS Applied Materials and Interfaces. 9 (20), pp. 16967-16976. https://doi.org/10.1021/acsami.6b16395
Potassium-Ion Storage in Cellulose-Derived Hard Carbon: The Role of Functional Groups
Nanjundan, Ashok, Gaddam, Rohit Ranganathan, Niaei, Amir H. Farokh, Annamalai, Pratheep K., Dubal, Deepak P., Martin, Darren James, Yamauchi, Yusuke, Searles, Debra J. and Zhao, Xiu Song. 2020. "Potassium-Ion Storage in Cellulose-Derived Hard Carbon: The Role of Functional Groups." Batteries & Supercaps. 3 (9), pp. 953-960. https://doi.org/10.1002/batt.202000116
Ammonia gas sensing properties of Al doped ZnO thin films
Kathwate, L.H., Umadevi, G., Kulal, P., Nagaraju, P., Dubal, D.P., Nanjundan, A.K. and Mote, V.D.. 2020. "Ammonia gas sensing properties of Al doped ZnO thin films." Sensors and Actuators A: Physical. 313. https://doi.org/10.1016/j.sna.2020.112193
Uncovering giant nanowheels for magnesium ion–based batteries
Fan, X., Garai, S., Gaddam, R.R., Menezes, P.V., Dubal, D.P., Yamauchi, Y., Menezes, P.W., Nanjundan, A.K. and Zhao, X.S.. 2020. "Uncovering giant nanowheels for magnesium ion–based batteries." Materials Today Chemistry. 16. https://doi.org/10.1016/j.mtchem.2019.100221
True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors
Chodankar, Nilesh R., Pham, Hong Duc, Nanjundan, Ashok Kumar, Fernando, Joseph F. S., Jayaramulu, Kolleboyina, Golberg, Dmitri, Han, Young-Kyu and Dubal, Deepak P.. 2020. "True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors." Small. 16 (37). https://doi.org/10.1002/smll.202002806
Graphene and molybdenum disulphide hybrids for energy applications: an update
Chodankar, N.R., Nanjundan, A.K., Losic, D., Dubal, D.P. and Baek, J.-B.. 2020. "Graphene and molybdenum disulphide hybrids for energy applications: an update." Materials Today Advances. 6. https://doi.org/10.1016/j.mtadv.2019.100053