Several compact local stencils based on integrated RBFs for fourth-order ODEs and PDEs
Article
Article Title | Several compact local stencils based on integrated RBFs for fourth-order ODEs and PDEs |
---|---|
ERA Journal ID | 3460 |
Article Category | Article |
Authors | Hoang-Trieu, T.-T. (Author), Mai-Duy, N. (Author) and Tran-Cong, T. (Author) |
Journal Title | CMES Computer Modeling in Engineering and Sciences |
Journal Citation | 84 (2), pp. 171-203 |
Number of Pages | 33 |
Year | 2012 |
Place of Publication | Duluth, GA. United States |
ISSN | 1526-1492 |
1526-1506 | |
Digital Object Identifier (DOI) | https://doi.org/10.3970/cmes.2012.084.171 |
Web Address (URL) | http://www.techscience.com/doi/10.3970/cmes.2012.084.171.html |
Abstract | In this paper, new compact local stencils based on integrated radial basis functions (IRBFs) for solving fourth-order ordinary differential equations (ODEs) and partial differential equations (PDEs) are presented. Five types of compact stencils - 3-node and 5-node for 1D problems and 5×5-node, 13-node and 3×3 -node for 2D problems - are implemented. In the case of 3-node stencil and 3×3-node stencil, nodal values of the first derivative(s) of the field variable are treated as additional unknowns (i.e. 2 unknowns per node for 3-node stencil and 3 unknowns per node for 3×3-node stencil). The integration constants arising from the construction of IRBFs are exploited to incorporate into the local IRBF approximations (i) values of the governing equation (GE) at selected nodes for the case of 5-, 5×5- and 13-node stencils, and (ii) not only nodal values of the governing equation but also nodal values of the first derivative(s) for the case of 3-node stencil and 3×3-node stencil. There are no special treatments required for grid nodes near the boundary for 3-node stencil and 3×3-node stencil. The proposed stencils, which lead to sparse system matrices, are numerically verified through the solution of several test problems. |
Keywords | compact local approximations; high-order ODEs; high-order PDEs; integrated radial basis functions |
ANZSRC Field of Research 2020 | 490409. Ordinary differential equations, difference equations and dynamical systems |
490101. Approximation theory and asymptotic methods | |
401706. Numerical modelling and mechanical characterisation | |
Public Notes | Copyright © 2012 Tech Science Press. |
Byline Affiliations | Computational Engineering and Science Research Centre |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q160v/several-compact-local-stencils-based-on-integrated-rbfs-for-fourth-order-odes-and-pdes
Download files
2115
total views157
total downloads0
views this month1
downloads this month