Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry

Article


Shen, Jiacheng, Igathinathane, C., Yu, Manlu and Pothula, Anand Kumar. 2015. "Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry." Bioresource Technology. 185, pp. 89-98. https://doi.org/10.1016/j.biortech.2015.02.079
Article Title

Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry

ERA Journal ID3454
Article CategoryArticle
AuthorsShen, Jiacheng (Author), Igathinathane, C. (Author), Yu, Manlu (Author) and Pothula, Anand Kumar (Author)
Journal TitleBioresource Technology
Journal Citation185, pp. 89-98
Number of Pages10
Year2015
PublisherElsevier
Place of PublicationUnited Kingdom
ISSN0960-8524
1873-2976
Digital Object Identifier (DOI)https://doi.org/10.1016/j.biortech.2015.02.079
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0960852415002588
Abstract

Integral reaction heats of switchgrass, big bluestem, and corn stalks were determined using thermogravimetric analysis/differential scanning calorimetry (TGA/DSC). Iso-conversion differential reaction heats using TGA/DSC pyrolysis and combustion of biomass were not available, despite reports available on heats required and released. A concept of iso-conversion differential reaction heats was used to determine the differential reaction heats of each thermal characteristics segment of these materials. Results showed that the integral reaction heats were endothermic from 30 to 700. °C for pyrolysis of switchgrass and big bluestem, but they were exothermic for corn stalks prior to 587. °C. However, the integral reaction heats for combustion of the materials followed an endothermic to exothermic transition. The differential reaction heats of switchgrass pyrolysis were predominantly endothermic in the fraction of mass loss (0.0536-0.975), and were exothermic for corn stalks (0.0885-0.850) and big bluestem (0.736-0.919). Study results provided better insight into biomass thermal mechanism.

Keywordsbig bluestem, corn stover, lignocellulosic biomass, switchgrass thermal properties
ANZSRC Field of Research 2020409901. Agricultural engineering
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsNorth Dakota State University, United States
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q512w/biomass-pyrolysis-and-combustion-integral-and-differential-reaction-heats-with-temperatures-using-thermogravimetric-analysis-differential-scanning-calorimetry

  • 159
    total views
  • 9
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Milled industrial beet color kinetics and total soluble solid contents by image analysis
Pothula, Anand Kumar, Igathinathane, C., Shen, Jiacheng, Nichols, K. and Archer, David. 2015. "Milled industrial beet color kinetics and total soluble solid contents by image analysis." Industrial Crops and Products. 65, pp. 159-169. https://doi.org/10.1016/j.indcrop.2014.12.001
Profile based image analysis for identification of chopped biomass stem nodes and internodes
Pothula, Anand Kumar, Igathinathane, C. and Kronberg, S.. 2015. "Profile based image analysis for identification of chopped biomass stem nodes and internodes." Industrial Crops and Products. 70 (1), pp. 374-382. https://doi.org/10.1016/j.indcrop.2015.03.048
Innovative technology for apple harvest and in-field sorting
Lu, Renfu, Zhang, Zhao and Pothula, Anand Kumar. 2017. "Innovative technology for apple harvest and in-field sorting." Fruit Quaterly. 25 (2), pp. 11-14.
Automatic unhulled rice grain crack detection by X-ray imaging
Pothula, Anand Kumar and Bal, Satish. 2007. "Automatic unhulled rice grain crack detection by X-ray imaging." Transactions of the ASABE. 50 (5), pp. 1907-1911.
Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine." Transactions of the ASABE. 60 (6), pp. 1839-1849. https://doi.org/10.13031/trans.12488
Economic evaluation of apple harvest and in-filed sorting technology
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Economic evaluation of apple harvest and in-filed sorting technology." Transactions of the ASABE. 60 (5), pp. 1537-1550. https://doi.org/10.13031/trans.12226
Design features and bruise evaluation of an apple harvest and in-filed presorting machine
Pothula, Anand Kumar, Zhang, Zhao and Lu, Renfu. 2018. "Design features and bruise evaluation of an apple harvest and in-filed presorting machine." Transactions of the ASABE. 61 (3), pp. 1135-1144. https://doi.org/10.13031/trans.12327
A review of bin filling technologies for apple harvest and postharvest handling
Zhang, Z., Pothula, A. K. and Lu, R.. 2018. "A review of bin filling technologies for apple harvest and postharvest handling." Applied Engineering in Agriculture. 34 (4), pp. 687-703. https://doi.org/10.13031/aea.12827
System for sorting fruit
Lu, Renfu, Pothula, Anand Kumar, Mizushima, Akira, Vandyke, Mario and Zhang, Zhao. 2018. System for sorting fruit. US 9919345 B1
Digital image processing based identification of nodes and internodes of chopped biomass stems
Pothula, Anand Kumar, Igathinathane, C., Kronberg, S. and Hendrickson, J.. 2014. "Digital image processing based identification of nodes and internodes of chopped biomass stems." Computers and Electronics in Agriculture. 105, pp. 54-65. https://doi.org/10.1016/j.compag.2014.04.006
Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries
Pothula, Anand Kumar, Igathinathane, C., Faller, T. and Whittaker, R.. 2014. "Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries." Biomass and Bioenergy. 68, pp. 161-174. https://doi.org/10.1016/j.biombioe.2014.06.017
Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop
Singh, Angom Ingocha and Pothula, Anand Kumar. 2013. "Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop." Mountain Research and Development. 33 (4), pp. 453-462. https://doi.org/10.1659/MRD-JOURNAL-D-12-00069.1