Automatic unhulled rice grain crack detection by X-ray imaging

Article


Pothula, Anand Kumar and Bal, Satish. 2007. "Automatic unhulled rice grain crack detection by X-ray imaging." Transactions of the ASABE. 50 (5), pp. 1907-1911.
Article Title

Automatic unhulled rice grain crack detection by X-ray imaging

ERA Journal ID3442
Article CategoryArticle
AuthorsPothula, Anand Kumar (Author) and Bal, Satish (Author)
Journal TitleTransactions of the ASABE
Journal Citation50 (5), pp. 1907-1911
Number of Pages5
Year2007
Place of PublicationUnited States
ISSN2151-0032
2151-0040
Abstract

Crack detection of incoming paddy (unhulled rice grain) is an important step in the rice milling industry, as paddy grains with cracks severely affect the milling yield. The present method of crack detection by manually dehusking and examining kernels under light is laborious, time consuming, and highly subjective. The potential of x-ray imaging for paddy grain crack detection was investigated. Algorithms were developed for automatic detection of paddy cracks from the x-ray image. Hough transform was used to determine the cracks in the final segmented image. A graphical user interface (GUI) was developed for displaying the number of cracks in the given x-ray image.

Keywordscracks, detection, paddy, segmentation, x‐ray.
ANZSRC Field of Research 2020409901. Agricultural engineering
Public Notes

File reproduced in accordance with the copyright policy of the publisher/author.

Byline AffiliationsIndian Institute of Technology, India
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q5131/automatic-unhulled-rice-grain-crack-detection-by-x-ray-imaging

Download files

  • 142
    total views
  • 115
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Milled industrial beet color kinetics and total soluble solid contents by image analysis
Pothula, Anand Kumar, Igathinathane, C., Shen, Jiacheng, Nichols, K. and Archer, David. 2015. "Milled industrial beet color kinetics and total soluble solid contents by image analysis." Industrial Crops and Products. 65, pp. 159-169. https://doi.org/10.1016/j.indcrop.2014.12.001
Profile based image analysis for identification of chopped biomass stem nodes and internodes
Pothula, Anand Kumar, Igathinathane, C. and Kronberg, S.. 2015. "Profile based image analysis for identification of chopped biomass stem nodes and internodes." Industrial Crops and Products. 70 (1), pp. 374-382. https://doi.org/10.1016/j.indcrop.2015.03.048
Innovative technology for apple harvest and in-field sorting
Lu, Renfu, Zhang, Zhao and Pothula, Anand Kumar. 2017. "Innovative technology for apple harvest and in-field sorting." Fruit Quaterly. 25 (2), pp. 11-14.
Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry
Shen, Jiacheng, Igathinathane, C., Yu, Manlu and Pothula, Anand Kumar. 2015. "Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry." Bioresource Technology. 185, pp. 89-98. https://doi.org/10.1016/j.biortech.2015.02.079
Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine." Transactions of the ASABE. 60 (6), pp. 1839-1849. https://doi.org/10.13031/trans.12488
Economic evaluation of apple harvest and in-filed sorting technology
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Economic evaluation of apple harvest and in-filed sorting technology." Transactions of the ASABE. 60 (5), pp. 1537-1550. https://doi.org/10.13031/trans.12226
Design features and bruise evaluation of an apple harvest and in-filed presorting machine
Pothula, Anand Kumar, Zhang, Zhao and Lu, Renfu. 2018. "Design features and bruise evaluation of an apple harvest and in-filed presorting machine." Transactions of the ASABE. 61 (3), pp. 1135-1144. https://doi.org/10.13031/trans.12327
A review of bin filling technologies for apple harvest and postharvest handling
Zhang, Z., Pothula, A. K. and Lu, R.. 2018. "A review of bin filling technologies for apple harvest and postharvest handling." Applied Engineering in Agriculture. 34 (4), pp. 687-703. https://doi.org/10.13031/aea.12827
System for sorting fruit
Lu, Renfu, Pothula, Anand Kumar, Mizushima, Akira, Vandyke, Mario and Zhang, Zhao. 2018. System for sorting fruit. US 9919345 B1
Digital image processing based identification of nodes and internodes of chopped biomass stems
Pothula, Anand Kumar, Igathinathane, C., Kronberg, S. and Hendrickson, J.. 2014. "Digital image processing based identification of nodes and internodes of chopped biomass stems." Computers and Electronics in Agriculture. 105, pp. 54-65. https://doi.org/10.1016/j.compag.2014.04.006
Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries
Pothula, Anand Kumar, Igathinathane, C., Faller, T. and Whittaker, R.. 2014. "Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries." Biomass and Bioenergy. 68, pp. 161-174. https://doi.org/10.1016/j.biombioe.2014.06.017
Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop
Singh, Angom Ingocha and Pothula, Anand Kumar. 2013. "Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop." Mountain Research and Development. 33 (4), pp. 453-462. https://doi.org/10.1659/MRD-JOURNAL-D-12-00069.1