Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries

Article


Pothula, Anand Kumar, Igathinathane, C., Faller, T. and Whittaker, R.. 2014. "Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries." Biomass and Bioenergy. 68, pp. 161-174. https://doi.org/10.1016/j.biombioe.2014.06.017
Article Title

Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries

ERA Journal ID3452
Article CategoryArticle
AuthorsPothula, Anand Kumar (Author), Igathinathane, C. (Author), Faller, T. (Author) and Whittaker, R. (Author)
Journal TitleBiomass and Bioenergy
Journal Citation68, pp. 161-174
Number of Pages14
Year2014
Place of PublicationUnited Kingdom
ISSN0961-9534
1873-2909
Digital Object Identifier (DOI)https://doi.org/10.1016/j.biombioe.2014.06.017
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S0961953414003195
Abstract

Conventional raw beet juice extraction in food-grade crystal sugar production is a highly involved and energy intensive process, which includes beets washing, thawing of frozen beets, cossettes slicing, and high temperature denaturation and diffusion. Industrial beets, a new feedstock bred for non-food industrial use, processing for biofuel and bioproducts applications can use less stringent quality requirements and simplify the juice extraction process. A novel simplified front end processing (FEP), which is less expensive, energy efficient, and involved only common equipment (hammer mill and basket press), was developed and tested. The hammer mill pulverized the beets and basket press extracted the juice. Four beet conditions (fresh, frozen, thawed and fresh-frozen) and four presses with water addition were tested for juice extraction. The juice concentration had decreased with the increased number of presses, and the fitted exponential equations (R2≥0.97) determined the juice concentration as a function of number of presses. Frozen beets consistently produced significantly high concentration juice followed by fresh-frozen, thawed, and fresh beets. Freezing had a beneficial effect in increasing the cumulative approximate sugar extracted. Two presses for fresh (92%) and three for frozen (97%) beets extracted the most available sugars. Future research may focus on water temperature, beet particle size, juice for extraction, microbial stability, energy economics, and products utilization. This new FEP efficiently extracts industrial beet juice and has direct scope in industry deployment as well as enhances the potential of the fuel generated being recognized as an advanced biofuel by the renewable fuel standards.

Keywordsbasket press, biofuel, hammer mill, renewable energy, sugar beet
ANZSRC Field of Research 2020409901. Agricultural engineering
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsNorth Dakota State University, United States
Heartland Renewable Energy, United States
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q512x/novel-front-end-processing-method-of-industrial-beet-juice-extraction-for-biofuels-and-bioproducts-industries

  • 112
    total views
  • 9
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Milled industrial beet color kinetics and total soluble solid contents by image analysis
Pothula, Anand Kumar, Igathinathane, C., Shen, Jiacheng, Nichols, K. and Archer, David. 2015. "Milled industrial beet color kinetics and total soluble solid contents by image analysis." Industrial Crops and Products. 65, pp. 159-169. https://doi.org/10.1016/j.indcrop.2014.12.001
Profile based image analysis for identification of chopped biomass stem nodes and internodes
Pothula, Anand Kumar, Igathinathane, C. and Kronberg, S.. 2015. "Profile based image analysis for identification of chopped biomass stem nodes and internodes." Industrial Crops and Products. 70 (1), pp. 374-382. https://doi.org/10.1016/j.indcrop.2015.03.048
Innovative technology for apple harvest and in-field sorting
Lu, Renfu, Zhang, Zhao and Pothula, Anand Kumar. 2017. "Innovative technology for apple harvest and in-field sorting." Fruit Quaterly. 25 (2), pp. 11-14.
Automatic unhulled rice grain crack detection by X-ray imaging
Pothula, Anand Kumar and Bal, Satish. 2007. "Automatic unhulled rice grain crack detection by X-ray imaging." Transactions of the ASABE. 50 (5), pp. 1907-1911.
Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry
Shen, Jiacheng, Igathinathane, C., Yu, Manlu and Pothula, Anand Kumar. 2015. "Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry." Bioresource Technology. 185, pp. 89-98. https://doi.org/10.1016/j.biortech.2015.02.079
Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine." Transactions of the ASABE. 60 (6), pp. 1839-1849. https://doi.org/10.13031/trans.12488
Economic evaluation of apple harvest and in-filed sorting technology
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Economic evaluation of apple harvest and in-filed sorting technology." Transactions of the ASABE. 60 (5), pp. 1537-1550. https://doi.org/10.13031/trans.12226
Design features and bruise evaluation of an apple harvest and in-filed presorting machine
Pothula, Anand Kumar, Zhang, Zhao and Lu, Renfu. 2018. "Design features and bruise evaluation of an apple harvest and in-filed presorting machine." Transactions of the ASABE. 61 (3), pp. 1135-1144. https://doi.org/10.13031/trans.12327
A review of bin filling technologies for apple harvest and postharvest handling
Zhang, Z., Pothula, A. K. and Lu, R.. 2018. "A review of bin filling technologies for apple harvest and postharvest handling." Applied Engineering in Agriculture. 34 (4), pp. 687-703. https://doi.org/10.13031/aea.12827
System for sorting fruit
Lu, Renfu, Pothula, Anand Kumar, Mizushima, Akira, Vandyke, Mario and Zhang, Zhao. 2018. System for sorting fruit. US 9919345 B1
Digital image processing based identification of nodes and internodes of chopped biomass stems
Pothula, Anand Kumar, Igathinathane, C., Kronberg, S. and Hendrickson, J.. 2014. "Digital image processing based identification of nodes and internodes of chopped biomass stems." Computers and Electronics in Agriculture. 105, pp. 54-65. https://doi.org/10.1016/j.compag.2014.04.006
Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop
Singh, Angom Ingocha and Pothula, Anand Kumar. 2013. "Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop." Mountain Research and Development. 33 (4), pp. 453-462. https://doi.org/10.1659/MRD-JOURNAL-D-12-00069.1