A review of bin filling technologies for apple harvest and postharvest handling

Article


Zhang, Z., Pothula, A. K. and Lu, R.. 2018. "A review of bin filling technologies for apple harvest and postharvest handling." Applied Engineering in Agriculture. 34 (4), pp. 687-703. https://doi.org/10.13031/aea.12827
Article Title

A review of bin filling technologies for apple harvest and postharvest handling

ERA Journal ID3444
Article CategoryArticle
AuthorsZhang, Z. (Author), Pothula, A. K. (Author) and Lu, R. (Author)
Journal TitleApplied Engineering in Agriculture
Journal Citation34 (4), pp. 687-703
Number of Pages17
Year2018
Place of PublicationUnited States
ISSN0883-8542
1943-7838
Digital Object Identifier (DOI)https://doi.org/10.13031/aea.12827
Web Address (URL)https://elibrary.asabe.org/abstract.asp?aid=49538
Abstract

Bin fillers play a critical role in transporting and distributing fruit evenly and without bruising into individual bins or containers from harvest platforms infield or sorting lines in the packinghouse. Over the years, a large variety of bin fillers have been developed for infield use and postharvest handling. This article reviews different bin filling technologies in terms of major design features, performance, and throughput, as well as automatic control and safety features. For infield use, bin filler designs have evolved from the early use of conveyors and reciprocating plates to recent adoption of soft pads and foam rollers, to reduce bruising and improve fruit distributions. For postharvest use, tilted bins and conveyors commonly used with early bin fillers have been replaced with hinged trays and vacuum suction cups for fruit transport and cylinder brushes and swingable dividers for bruise prevention. While many types of bin fillers have been developed, few are suitable for infield use because it imposes more constraints than postharvest use. Despite the use of automatic sensing and control in most bin fillers, human assistance is still needed during their operation. There are still major issues with the current bin fillers, such as large size, complexity in design, uneven fruit distributions, and low throughput. Further effort should, therefore, be directed towards the development of high throughput, simple yet reliable, compact and fully automated, or even intelligent bin fillers for infield and postharvest use.

Keywordsapples, automation, bin filler, harvest, infield, postharvest handling
ANZSRC Field of Research 2020409901. Agricultural engineering
Public Notes

File reproduced in accordance with the copyright policy of the publisher/author.

Byline AffiliationsMichigan State University, United States
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q5124/a-review-of-bin-filling-technologies-for-apple-harvest-and-postharvest-handling

  • 175
    total views
  • 537
    total downloads
  • 2
    views this month
  • 12
    downloads this month

Export as

Related outputs

Evaluation of a new apple in-field sorting system for fruit singulation, rotation and imaging
Pothula, Anand Kumar, Zhang, Zhao and Lu, Renfu. 2023. "Evaluation of a new apple in-field sorting system for fruit singulation, rotation and imaging." Computers and Electronics in Agriculture. 208. https://doi.org/10.1016/j.compag.2023.107789
Milled industrial beet color kinetics and total soluble solid contents by image analysis
Pothula, Anand Kumar, Igathinathane, C., Shen, Jiacheng, Nichols, K. and Archer, David. 2015. "Milled industrial beet color kinetics and total soluble solid contents by image analysis." Industrial Crops and Products. 65, pp. 159-169. https://doi.org/10.1016/j.indcrop.2014.12.001
Profile based image analysis for identification of chopped biomass stem nodes and internodes
Pothula, Anand Kumar, Igathinathane, C. and Kronberg, S.. 2015. "Profile based image analysis for identification of chopped biomass stem nodes and internodes." Industrial Crops and Products. 70 (1), pp. 374-382. https://doi.org/10.1016/j.indcrop.2015.03.048
Innovative technology for apple harvest and in-field sorting
Lu, Renfu, Zhang, Zhao and Pothula, Anand Kumar. 2017. "Innovative technology for apple harvest and in-field sorting." Fruit Quaterly. 25 (2), pp. 11-14.
Automatic unhulled rice grain crack detection by X-ray imaging
Pothula, Anand Kumar and Bal, Satish. 2007. "Automatic unhulled rice grain crack detection by X-ray imaging." Transactions of the ASABE. 50 (5), pp. 1907-1911.
Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry
Shen, Jiacheng, Igathinathane, C., Yu, Manlu and Pothula, Anand Kumar. 2015. "Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry." Bioresource Technology. 185, pp. 89-98. https://doi.org/10.1016/j.biortech.2015.02.079
Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Development and preliminary evaluation of a new bin filler for apple harvesting and in-filed sorting machine." Transactions of the ASABE. 60 (6), pp. 1839-1849. https://doi.org/10.13031/trans.12488
Economic evaluation of apple harvest and in-filed sorting technology
Zhang, Z., Pothula, A. K. and Lu, R.. 2017. "Economic evaluation of apple harvest and in-filed sorting technology." Transactions of the ASABE. 60 (5), pp. 1537-1550. https://doi.org/10.13031/trans.12226
Design features and bruise evaluation of an apple harvest and in-filed presorting machine
Pothula, Anand Kumar, Zhang, Zhao and Lu, Renfu. 2018. "Design features and bruise evaluation of an apple harvest and in-filed presorting machine." Transactions of the ASABE. 61 (3), pp. 1135-1144. https://doi.org/10.13031/trans.12327
System for sorting fruit
Lu, Renfu, Pothula, Anand Kumar, Mizushima, Akira, Vandyke, Mario and Zhang, Zhao. 2018. System for sorting fruit. US 9919345 B1
Digital image processing based identification of nodes and internodes of chopped biomass stems
Pothula, Anand Kumar, Igathinathane, C., Kronberg, S. and Hendrickson, J.. 2014. "Digital image processing based identification of nodes and internodes of chopped biomass stems." Computers and Electronics in Agriculture. 105, pp. 54-65. https://doi.org/10.1016/j.compag.2014.04.006
Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries
Pothula, Anand Kumar, Igathinathane, C., Faller, T. and Whittaker, R.. 2014. "Novel front end processing method of industrial beet juice extraction for biofuels and bioproducts industries." Biomass and Bioenergy. 68, pp. 161-174. https://doi.org/10.1016/j.biombioe.2014.06.017
Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop
Singh, Angom Ingocha and Pothula, Anand Kumar. 2013. "Postharvest processing of large cardamom in the Eastern Himalaya: a review and recommendations for increasing the sustainability of a niche crop." Mountain Research and Development. 33 (4), pp. 453-462. https://doi.org/10.1659/MRD-JOURNAL-D-12-00069.1