Effectiveness of gravity based particle separation and soil washing for reduction of Pb in a clay loam shooting range soil

Article


Sanderson, Peter, Thangavadivel, Kandasamy, Ranganathan, Srinivasan, Chadalavada, Sreenivasulu, Naidu, Ravi and Bowman, Mark. 2019. "Effectiveness of gravity based particle separation and soil washing for reduction of Pb in a clay loam shooting range soil." Environmental Technology and Innovation. 16, pp. 1-7. https://doi.org/10.1016/j.eti.2019.100480
Article Title

Effectiveness of gravity based particle separation and soil
washing for reduction of Pb in a clay loam shooting range soil

ERA Journal ID210427
Article CategoryArticle
AuthorsSanderson, Peter (Author), Thangavadivel, Kandasamy (Author), Ranganathan, Srinivasan (Author), Chadalavada, Sreenivasulu (Author), Naidu, Ravi (Author) and Bowman, Mark (Author)
Journal TitleEnvironmental Technology and Innovation
Journal Citation16, pp. 1-7
Article Number100480
Number of Pages7
Year2019
PublisherElsevier
Place of PublicationNetherlands
ISSN2352-1864
Digital Object Identifier (DOI)https://doi.org/10.1016/j.eti.2019.100480
Web Address (URL)https://www.sciencedirect.com/science/article/pii/S2352186419301622
Abstract

A heavy particle concentrator (HPC), which can separate heavy metal particles from soil based on density, was examined for remediation of shooting range soil contaminated with lead (Pb) from a military training area. Concentrations of Pb in the stockpiles ranged between 1403 and 4300 mg/kg. The soils had high clay and silt content and were found to have relatively high exchangeable Pb, between 238 and 1480 mg/kg. After initial treatment by HPC, total Pb in the soil was reduced by 28%–56%. The fine soil fraction (<250μm) was found to still have relatively high Pb after HPC treatment. A greater removal efficiency was achieved by passing contaminated soil through the HPC a second time. Scanning electron microscopy (SEM) analysis of the treated stockpile indicated Pb present in the soil sorbed on soil particles or as very fine discrete particles (<10 - 20μm) after initial HPC treatment. The addition of a chemical washing agent, ethylenediamine-N, N’-disuccinic acid (EDDS) was effective for removal of 68% of residual Pb after a single HPC treatment and may be considered for high clay soils.

KeywordsEnvironmental contamination; Management-practices; Metal contaminants; Heavy-metals; Lead; Remediation; Removal; Bioavailability; Adsorption; Pollution
ANZSRC Field of Research 2020401106. Waste management, reduction, reuse and recycling
Byline AffiliationsUniversity of Newcastle
Department of Defence, Australia
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q7204/effectiveness-of-gravity-based-particle-separation-and-soil-washing-for-reduction-of-pb-in-a-clay-loam-shooting-range-soil

Download files


Published Version
1-s2.0-S2352186419301622-main.pdf
File access level: Anyone

  • 131
    total views
  • 99
    total downloads
  • 0
    views this month
  • 3
    downloads this month

Export as

Related outputs

Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques
Farzana, Syeda Zehan, Paudyal, Dev Raj, Chadalavada, Sreeni and Alam, Md Jahangir. 2024. "Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques." Water. 16 (15). https://doi.org/10.3390/w16152107
Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach
Farzana, Syeda Zeh, Paudyal, Dev Raj, Chadalavada, Sreeni and Alam, Md Jahangir. 2024. "Spatiotemporal Variability Analysis of Rainfall and Water Quality: Insights from Trend Analysis and Wavelet Coherence Approach." Geosciences. 14 (8). https://doi.org/10.3390/geosciences14080225
Variability of Extreme Climate Events and Prediction of Land Cover Change and Future Climate Change Effects on the Streamflow in Southeast Queensland, Australia
Pakdel, Hadis, Chadalavada, Sreeni, Alam, Md Jahangir, Paudyal, Dev Raj and Vazifedoust, Majid. 2024. "Variability of Extreme Climate Events and Prediction of Land Cover Change and Future Climate Change Effects on the Streamflow in Southeast Queensland, Australia." ISPRS International Journal of Geo-Information. 13 (4). https://doi.org/10.3390/ijgi13040123
AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2024. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19163-2
Spatial Digital Twin Architecture for the Field Design Process of Oil and Gas Projects in Australia
Bhandari, Sijan, Paudyal, Dev Raj and Chadalavada, Sreeni. 2024. "Spatial Digital Twin Architecture for the Field Design Process of Oil and Gas Projects in Australia ." Land. 13 (7), p. 902. https://doi.org/10.3390/land13070902
An Alternative Method for Estimating the Peak Flow for a Regional Catchment Considering the Uncertainty via Continuous Simulation
Brown, Ian, McDougall, Kevin, Chadalavada, Sreeni and Alam, Md Jahangir. 2023. "An Alternative Method for Estimating the Peak Flow for a Regional Catchment Considering the Uncertainty via Continuous Simulation ." Water. 15 (19). https://doi.org/https://doi.org/10.3390/w15193355
Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia
Farzana, Syeda Zehan, Paudyal, Dev Raj, Chadalavada, Sreeni and Alam, Md Jahangir. 2023. "Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia." Geosciences. 13 (293). https://doi.org/10.3390/geosciences13100293
A Multi-Framework of Google Earth Engine and GEV for Spatial Analysis of Extremes in Non-Stationary Condition in Southeast Queensland, Australia
Pakdel, Hadis, Paudyal, Dev Raj, Chadalavada, Sreeni, Alam, Md Jahangir and Vazifedoust, Majid. 2023. "A Multi-Framework of Google Earth Engine and GEV for Spatial Analysis of Extremes in Non-Stationary Condition in Southeast Queensland, Australia." ISPRS International Journal of Geo-Information. 12 (9). https://doi.org/10.3390/ijgi12090370
Evaluating the role of preferential pathways in exacerbating vapour intrusion risks
Unnithan, Aravind, Bekele, Dawit, Samarasinghe, Chamila, Chadalavada, Sreenivasulu and Naidu, Ravi. 2023. "Evaluating the role of preferential pathways in exacerbating vapour intrusion risks." Journal of Hazardous Materials Advances. 10. https://doi.org/10.1016/j.hazadv.2023.100310
Climate-influenced hydrobiogeochemistry and groundwater remedy design: A review
Warner, Scott D., Bekele, Dawit, Nathanail, Paul, Chadalavada, Sreeni and Naidu, Ravi. 2023. "Climate-influenced hydrobiogeochemistry and groundwater remedy design: A review ." Remediation: the journal of environmental cleanup costs, technologies and techniques. 33 (3), pp. 187-207. https://doi.org/10.1002/rem.21753
Two-dimensional chlorinated vapour intrusion model involving advective transport of vapours with a highly permeable granular layer in the vadose zone serving as the preferential pathway
Unnithan, Aravind, Bekele, Dawit Nega, Chadalavada, Sreenivasulu and Naidu, Ravi. 2023. "Two-dimensional chlorinated vapour intrusion model involving advective transport of vapours with a highly permeable granular layer in the vadose zone serving as the preferential pathway." Science of the Total Environment. 869. https://doi.org/10.1016/j.scitotenv.2023.161743
Enhanced Bio-P removal: Past, present, and future – A comprehensive review
Diaz, Ruby, Mackey, Brendan, Chadalavada, Sreeni, kainthola, Jyoti, Heck, Phil and Goel, Ramesh. 2022. "Enhanced Bio-P removal: Past, present, and future – A comprehensive review." Chemosphere. 309 (Part 2), pp. 1-20. https://doi.org/10.1016/j.chemosphere.2022.136518
Calibration of a continuous hydrologic simulation model in the urban Gowrie Creek catchment in Toowoomba, Australia
Brown, I. W., McDougall, K., Alam, Md. Jahangir, Chowdhury, R. and Chadalavada, S.. 2022. "Calibration of a continuous hydrologic simulation model in the urban Gowrie Creek catchment in Toowoomba, Australia." Journal of Hydrology: Regional Studies. 40, pp. 1-16. https://doi.org/10.1016/j.ejrh.2022.101021
Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater
Wang, Liang, Cheng, Ying, Naidu, Ravi, Chadalavada, Sreenivasulu, Bekele, Dawit, Gell, Peter, Donaghey, Mark and Bowman, Mark. 2021. "Application of portable gas chromatography–mass spectrometer for rapid field based determination of TCE in soil vapour and groundwater." Environmental Technology and Innovation. 21, pp. 1-11. https://doi.org/10.1016/j.eti.2020.101274
Electrokinetic remediation of petroleum hydrocarbon contaminated soil (I)
Saini, Anish, Bekele, Dawit Nega, Chadalavada, Sreenivasulu, Fang, Cheng and Naidu, Ravi. 2021. "Electrokinetic remediation of petroleum hydrocarbon contaminated soil (I)." Environmental Technology and Innovation. 23, pp. 1-9. https://doi.org/10.1016/j.eti.2021.101585
Phytotoxicity of Class B aqueous firefighting formulations, Tridol S 3 and 6% to Lemna minor
Logeshwaran, Panneerselvan, Sivaram, Anithadevi Kenday, Yadav, Meena, Chadalavada, Sreenivasulu, Naidu, Ravi and Mallavarapu, Megharaj. 2020. "Phytotoxicity of Class B aqueous firefighting formulations, Tridol S 3 and 6% to Lemna minor." Environmental Technology and Innovation. 18, pp. 1-11. https://doi.org/10.1016/j.eti.2020.100688
Smartphone-based / Fluoro-SPE for selective detection of PFAS at ppb level
Al Amin, Md., Sobhani, Zahra, Chadalavada, Sreenivasulu, Naidu, Ravi and Fang, Cheng. 2020. "Smartphone-based / Fluoro-SPE for selective detection of PFAS at ppb level." Environmental Technology and Innovation. 18, pp. 1-8. https://doi.org/10.1016/j.eti.2020.100778
Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment
Wang, Liang, Cheng, Ying, Lamb, Dane, Dharmarajan, Raja, Chadalavada, Sreenivasulu and Naidu, Ravi. 2019. "Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 207, pp. 183-188. https://doi.org/10.1016/j.saa.2018.09.024
Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs
Naidu, R., Nadebaum, P., Fang, C., Cousins, I., Pennell, K., Conder, J., Newell, C. J., Longpre, D., Warner, S., Crosbie, N. D., Surapaneni, A., Bekele, D., Spiese, R., Bradshaw, T., Slee, D., Liu, Y., Qi, F., Mallavarapu, M., Duan, L., ..., Nathanail, P.. 2020. "Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs." Environmental Technology and Innovation. 19, pp. 1-18. https://doi.org/10.1016/j.eti.2020.100915
Actively facilitated permeable reactive barrier for remediation of TCE from a low permeability aquifer: Field application
Bekele, Dawit N., Du, Jianhua, de Freitas, Leandro Gomes, Mallavarapu, Megharaj, Chadalavada, Sreenivasulu and Naidu, Ravi. 2019. "Actively facilitated permeable reactive barrier for remediation of TCE from a low permeability aquifer: Field application." Journal of Hydrology. 572, pp. 592-602. https://doi.org/10.1016/j.jhydrol.2019.03.059
A review of electrokinetically enhanced bioremediation technologies for PHs
Saini, Anish, Bekele, Dawit Nega, Chadalavada, Sreenivasulu, Fang, Cheng and Naidu, Ravi. 2020. "A review of electrokinetically enhanced bioremediation technologies for PHs." Journal of Environmental Sciences. 88, pp. 31-45. https://doi.org/10.1016/j.jes.2019.08.010
Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS) - A review
Al-Amin, Md., Sobhani, Zahra, Liu, Yanju, Dharmaraja, Raja, Chadalavada, Sreenivasulu, Naidu, Ravi, Chalker, Justin M. and Fang, Cheng. 2020. "Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS) - A review." Environmental Technology and Innovation. 19, pp. 1-24. https://doi.org/10.1016/j.eti.2020.100879
Separation and Lithological Mapping of PFAS Mixtures in the Vadose Zone at a Contaminated Site
Bekele, Dawit N., Liu, Yanju, Donaghey, Mark, Umeh, Anthony, Arachchige, Chamila S. V., Chadalavada, Sreenivasulu and Naidu, Ravi. 2020. "Separation and Lithological Mapping of PFAS Mixtures in the Vadose Zone at a Contaminated Site." Frontiers in Water. 2, pp. 1-12. https://doi.org/10.3389/frwa.2020.597810
Combining environmental isotopes with Contaminants of Emerging Concern (CECs) to characterise wastewater derived impacts on groundwater quality
McCance, W., Jones, O. A. H., Cendon, D. I., Edwards, M., Surapaneni, A., Chadalavada, S., Wang, S. and Currell, M.. 2020. "Combining environmental isotopes with Contaminants of Emerging Concern (CECs) to characterise wastewater derived impacts on groundwater quality." Water Research. 182, pp. 1-15. https://doi.org/10.1016/j.watres.2020.116036
Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses
Umeh, Anthony C., Naidu, Ravi, Shilpi, Sonia, Boateng, Emmanuel B., Rahman, Aminur, Cousins, Ian T., Chadalavada, Sreenivasulu, Lamb, Dane and Bowman, Mark. 2021. "Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses." Environmental Science and Technology. 55 (3), pp. 1779-1789. https://doi.org/10.1021/acs.est.0c07202
Decoupling wastewater impacts from hydrogeochemical trends in impacted groundwater resources
McCance, W., Jones, O. A. H., Cendon, D. I., Edwards, M., Surapaneni, A., Chadalavada, S. and Currell, M.. 2021. "Decoupling wastewater impacts from hydrogeochemical trends in impacted groundwater resources." Science of the Total Environment. 774, pp. 1-16. https://doi.org/10.1016/j.scitotenv.2021.145781
Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario
Unnithan, Aravind, Bekele, Dawit Nega, Chadalavada, Sreenivasulu and Naidu, Ravi. 2021. "Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario." Science of the Total Environment. 796, pp. 1-16. https://doi.org/10.1016/j.scitotenv.2021.148885
Green roof substrates—A literature review
Kader, Shuraik, Chadalavada, Sreenivasulu, Jaufer, Lizny, Spalevic, Velibor and Dudic, Branislav. 2022. "Green roof substrates—A literature review." Frontiers in Built Environment. 8, pp. 265-272. https://doi.org/https://doi.org/10.3389/fbuil.2022.1019362
Google Earth Engine as Multi-Sensor Open-Source Tool for Monitoring Stream Flow in the Transboundary River Basin: Doosti River Dam
Pakdel-Khasmakhi, Hadis, Vazifedoust, Majid, Paudyal, Dev Raj, Chadalavada, Sreeni and Alam, Md Jahangir. 2022. "Google Earth Engine as Multi-Sensor Open-Source Tool for Monitoring Stream Flow in the Transboundary River Basin: Doosti River Dam." ISPRS International Journal of Geo-Information. 11 (11), pp. 1-28. https://doi.org/10.3390/ijgi11110535
Arsenic ecotoxicology: the interface between geosphere, hydrosphere and biosphere
Bundschuh, Jochen, Bhattacharya, Prosun, Nath, Bibhash, Naidu, Ravi, Ng, Jack, Guilherme, Luiz R. G., Ma, Lena Q., Kim, Kyoung-Woong and Jean, Jiin-Shuh. 2013. "Arsenic ecotoxicology: the interface between geosphere, hydrosphere and biosphere." Journal of Hazardous Materials. 262, pp. 883-886. https://doi.org/10.1016/j.jhazmat.2013.08.019
Arsenic in hydrological processes: sources, speciation, bioavailability and management
Bhattacharya, Prosun, Naidu, Ravi, Polya, David A., Mukherjee, Abhijit, Bundschuh, Jochen and Charlet, Laurent. 2014. "Arsenic in hydrological processes: sources, speciation, bioavailability and management ." Journal of Hydrology. 518 (Part C), pp. 279-283. https://doi.org/10.1016/j.jhydrol.2014.09.017