Magnetorotational instability in protoplanetary discs

Article


Salmeron, Raquel and Wardle, Mark. 2005. "Magnetorotational instability in protoplanetary discs." Monthly Notices of the Royal Astronomical Society. 361 (1), pp. 45-69. https://doi.org/10.1111/j.1365-2966.2005.09060.x
Article Title

Magnetorotational instability in protoplanetary discs

ERA Journal ID1074
Article CategoryArticle
AuthorsSalmeron, Raquel (Author) and Wardle, Mark (Author)
Journal TitleMonthly Notices of the Royal Astronomical Society
Journal Citation361 (1), pp. 45-69
Number of Pages25
Year2005
PublisherOxford University Press
Place of PublicationUnited Kingdom
ISSN0035-8711
1365-2966
Digital Object Identifier (DOI)https://doi.org/10.1111/j.1365-2966.2005.09060.x
Web Address (URL)https://academic.oup.com/mnras/article/361/1/45/1023928
Abstract

We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified accretion discs. The magnetic field is initially vertical and dust grains are assumed to have settled towards the mid-plane, so charges are carried by electrons and ions only. Solutions are obtained at representative radial locations from the central protostar for different choices of the initial magnetic field strength, sources of ionization, disc structure and configuration of the conductivity tensor. The MRI is active over a wide range of magnetic field strengths and fluid conditions in low-conductivity discs. Moreover, no evidence was found of a low-limit field strength below which unstable modes do not exist. For the minimum-mass solar nebula model, incorporating cosmic ray ionization, perturbations grow at 1 au for B ≲ 8 G. For a significant subset of these strengths (200 mG ≲ B ≲ 5 G), the maximum growth rate is of the order of the ideal magnetohydrodynamic (MHD) rate (0.75 Ω). Hall conductivity modifies the structure and growth rate of global unstable modes at 1 au for all magnetic field strengths that support MRI. As a result, at this radius, modes obtained with a full conductivity tensor grow faster and are active over a more extended cross-section of the disc than perturbations in the ambipolar diffusion limit. For relatively strong fields (e.g. B ≳ 200 mG), ambipolar diffusion alters the envelope shapes of the unstable modes, which peak at an intermediate height, instead of being mostly flat as modes in the Hall limit are in this region of parameter space. Similarly, when cosmic rays are assumed to be excluded from the disc by the winds emitted by the magnetically active protostar, unstable modes grow at this radius for B ≲ 2 G. For strong fields, perturbations exhibit a kink at the height where X-ray ionization becomes active. Finally, for R = 5 au (10 au), unstable modes exist for B ≲ 800 mG (B ≲ 250 mG) and the maximum growth rate is close to the ideal-MHD rate for 20 ≲ B≲ 500 mG (2 ≲ B ≲ 50 mG). Similarly, perturbations incorporating Hall conductivity have a higher wavenumber and grow faster than solutions in the ambipolar diffusion limit for B ≲ 100 mG (B ≲ 10 mG). Unstable modes grow even at the mid-plane for B ≳ 100 mG (B ∼ 1 mG), but for weaker fields, a small dead region exists. This study shows that, despite the low magnetic coupling, the magnetic field is dynamically important for a large range of fluid conditions and field strengths in protostellar discs. An example of such magnetic activity is the generation of MRI unstable modes, which are supported at 1 au for field strengths up to a few gauss. Hall diffusion largely determines the structure and growth rate of these perturbations for all studied radii. At radii of order 1 au, in particular, it is crucial to incorporate the full conductivity tensor in the analysis of this instability and more generally in studies of the dynamics of astrophysical discs.

KeywordsAccretion, accretion discs; Instabilities; MHD; Stars: formation
ANZSRC Field of Research 2020510109. Stellar astronomy and planetary systems
Public Notes

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2005 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Byline AffiliationsUniversity of Sydney
Macquarie University
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q7358/magnetorotational-instability-in-protoplanetary-discs

Download files


Published Version
mnras 2005 Salmeron.pdf
File access level: Anyone

  • 61
    total views
  • 33
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Academic Numeracies Framework in the GenAI Era
Howarth, Debi, Salmeron, Raquel and Galligan, Linda. 2024. "Academic Numeracies Framework in the GenAI Era." 2024 Learning and Teaching Symposium . Online 18 - 18 Oct 2024 Australia.
True encounters with the fictional university: collectively rewriting the script of filmic dark academia from the academic margins
Hopkins, Susan, Balloo, Kieran, Ramos, Fabiane, Salmeron, Raquel, Singh, Niharika and Wilson, Victoria E.. 2024. "True encounters with the fictional university: collectively rewriting the script of filmic dark academia from the academic margins ." Culture and Organization. https://doi.org/10.1080/14759551.2024.2394461
Academic Numeracies Framework – A tool to facilitate the systematic embedding of numeracies in university
Salmeron, Raquel, Galligan, Linda, Howarth, Debi and Raj, Nawin. 2024. "Academic Numeracies Framework – A tool to facilitate the systematic embedding of numeracies in university." 15th International Congress on Mathematical Education (ICME-15). Sydney, Australia 07 - 14 Jul 2024 Australia.
Academic Numeracies Framework
Salmeron, Raquel, Galligan, Linda and Howarth, Debi. 2024. Academic Numeracies Framework.
The Academic Numeracy Framework: A tool to embed numeracy in tertiary courses, programs and study-support initiatives
Salmeron, Raquel, Galligan, Linda, Howarth, Debi and Raj, Nawin. 2023. "The Academic Numeracy Framework: A tool to embed numeracy in tertiary courses, programs and study-support initiatives." 8th Students Transitions Achievement Retention & Success Conference (STARS 2023). Brisbane, Australia 03 - 05 Jul 2023 Australia.
The winds of young Solar-type stars in the Pleiades, AB Doradus, Columba, and β Pictoris
Evensberget, D, Marsden, S C, Carter, B D, Salmeron, R, Vidotto, A A, Folsom, C P, Kavanagh, R D, Pineda, J S, Driessen, F A and Strickert, K M. 2023. "The winds of young Solar-type stars in the Pleiades, AB Doradus, Columba, and β Pictoris ." Monthly Notices of the Royal Astronomical Society. 524 (2), pp. 2042-2063. https://doi.org/10.1093/mnras/stad1650
The winds of young Solar-type stars in Coma Berenices and Hercules-Lyra
Evensberget, D., Carter, B. D., Marsden, S. C., Brookshaw, L., Folsom, C. P. and Salmeron, R.. 2022. "The winds of young Solar-type stars in Coma Berenices and Hercules-Lyra." Monthly Notices of the Royal Astronomical Society. 510 (4), pp. 5226-5245. https://doi.org/10.1093/mnras/stab3557
Creating space to quell the ‘I can’t do maths’ factor through piloting an applied numeracy framework within course content and advising
Howarth, Debi, Salmeron, Raquel and Frederiks, Anita. 2021. "Creating space to quell the ‘I can’t do maths’ factor through piloting an applied numeracy framework within course content and advising." 15th Biennial Association for Academic Language and Learning Conference (AALL 2021). Darwin, Australia 17 - 19 Nov 2021 Australia.
Enhanced MHD Transport in Astrophysical Accretion Flows: Turbulence, Winds and Jets
Dobbie, Peter B., Kuncic, Zdenka, Bicknell, Geoffrey V. and Salmeron, Raquel. 2009. "Enhanced MHD Transport in Astrophysical Accretion Flows: Turbulence, Winds and Jets." Plasma and Fusion Research. 4, pp. 1-7. https://doi.org/10.1585/pfr.4.017
The effects of large-scale magnetic fields on disk formation and evolution
Konigl, Arieh and Salmeron, Raquel. 2011. "The effects of large-scale magnetic fields on disk formation and evolution." Garcia, Paulo J. V. (ed.) Physical Processes in Circumstellar Disks around Young Stars. Chicago, United States. University of Chicago Press. pp. 283-354
Formation of chondrules in magnetic winds blowing through the proto-asteroid belt
Salmeron, Raquel and Ireland, Trevor R.. 2012. "Formation of chondrules in magnetic winds blowing through the proto-asteroid belt." Earth and Planetary Science Letters. 327-328, pp. 61-67. https://doi.org/10.1016/j.epsl.2012.01.033
Magnetorotational Instability in weakly ionised, stratified accretion discs
Salmeron, Raquel and Wardle, Mark. 2004. "Magnetorotational Instability in weakly ionised, stratified accretion discs." Astrophysics and Space Science: an international journal of astronomy, astrophysics and space science. 292 (1-4), pp. 451-456. https://doi.org/10.1023/B:ASTR.0000045049.76937.48
Formation of stars and planets: the role of magnetic fields
Salmeron, R.. 2011. "Formation of stars and planets: the role of magnetic fields." Astrophysics and Space Science: an international journal of astronomy, astrophysics and space science. 335 (2), pp. 353-371. https://doi.org/10.1007/s10509-011-0783-x
The environment and physics of the early solar system
Salmeron, R.. 2012. "The environment and physics of the early solar system." Australian Journal of Earth Sciences. 59 (2), pp. 237-252. https://doi.org/10.1080/08120099.2012.652669
How to do science: A guide to researching human physiology
Lexis, Louise, Julien, Brianna, Bliss, Edward, Derrington, Kate, Dooley, Leanne, Kauter, Kate, McGregor, Rowena, Myer, Sarah, Salmeron, Raquel, Suraweera, Samanthi, Whiteside, Eliza and Windus, Louisa. 2022. How to do science: A guide to researching human physiology. Australia. University of Southern Queensland.
Isotopic and chemical fractionations caused by disk winds in the protoplanetary disk
Ireland, T. R., Salmeron, R. and Wardle, M.. 2016. "Isotopic and chemical fractionations caused by disk winds in the protoplanetary disk." 79th Annual Meeting of the Meteoritical Society. Berlin, Germany 07 - 12 Aug 2016 United States. John Wiley & Sons.
Centrifugally driven winds from protostellar accretion discs – I. Formulation and initial results
Nolan, C. A., Salmeron, R., Federrath, C., Bicknell, G. V. and Sutherland, R. S.. 2017. "Centrifugally driven winds from protostellar accretion discs – I. Formulation and initial results." Monthly Notices of the Royal Astronomical Society. 471 (2), pp. 1488-1505. https://doi.org/10.1093/mnras/stx1642
Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri
White, M. C., Bicknell, G. V., Sutherland, R. S., Salmeron, R. and McGregor, P. J.. 2016. "Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri." Monthly Notices of the Royal Astronomical Society. 455 (2), pp. 2042-2057. https://doi.org/10.1093/mnras/stv2317
The role of protostellar jets in star formation and the evolution of the early solar system: Astrophysical and meteoritical perspectives
Salmeron, Raquel and Ireland, Trevor. 2012. "The role of protostellar jets in star formation and the evolution of the early solar system: Astrophysical and meteoritical perspectives." Meteoritics and Planetary Science. 47 (12), pp. 1-19. https://doi.org/10.1111/maps.12029
Solar System Physics for Exoplanet Research
Horner, J., Kane, S. R., Marshall, J. P., Dalba, P. A., Holt, T. R., Wood, J., Maynard-Casely, H. E., Wittenmyer, R., Lykawka, P. S., Hill, M., Salmeron, R., Bailey, J., Lohne, T., Agnew, M., Carter, B. D. and Tylor, C. C. E.. 2020. "Solar System Physics for Exoplanet Research." Publications of the Astronomical Society of the Pacific. 132 (1016), pp. 1-115. https://doi.org/10.1088/1538-3873/ab8eb9
Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets
Budaj, J., Kocifaj, M., Salmeron, R. and Hubeny, I.. 2015. "Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets." Monthly Notices of the Royal Astronomical Society. 454 (1), pp. 2-27. https://doi.org/10.1093/mnras/stv1711
Magnetocentrifugal jets and chondrule formation in protostellar disks
Salmeron, Raquel and Ireland, Trevor. 2014. "Magnetocentrifugal jets and chondrule formation in protostellar disks." Booth, Mark, Matthews, Brenda C. and Graham, James R. (ed.) 2013 IAU Symposium: Exploring the Formation and Evolution of Planetary Systems. Victoria, Canada 02 - 07 Jun 2013 United States. https://doi.org/10.1017/S1743921313008442
Multi-epoch sub-arcsecond [Fe II] spectroimaging of the DG Tau outflows with NIFS – I. First data epoch
White, M. C., McGregor, P. J, Bicknell, G. V., Salmeron, R. and Beck, T. L.. 2014. "Multi-epoch sub-arcsecond [Fe II] spectroimaging of the DG Tau outflows with NIFS – I. First data epoch." Monthly Notices of the Royal Astronomical Society. 441 (2), pp. 1681-1707. https://doi.org/10.1093/mnras/stu654
Multi-epoch subarcsecond [Fe II] spectroimaging of the DG Tau outflows with NIFS – II. On the nature of the bipolar outflow asymmetry
White, M. C., Bicknell, G. V., McGregor, P. J. and Salmeron, R. 2014. "Multi-epoch subarcsecond [Fe II] spectroimaging of the DG Tau outflows with NIFS – II. On the nature of the bipolar outflow asymmetry." Monthly Notices of the Royal Astronomical Society. 442 (1), pp. 28-42. https://doi.org/10.1093/mnras/stu788
Hall diffusion and the magnetorotational instability in protoplanetary discs
Wardle, Mark and Salmeron, Raquel. 2012. "Hall diffusion and the magnetorotational instability in protoplanetary discs." Monthly Notices of the Royal Astronomical Society. 422 (4), pp. 2737-2755. https://doi.org/10.1111/j.1365-2966.2011.20022.x
Wind-driving protostellar accretion discs – II. Numerical method and illustrative solutions
Salmeron, Raquel, Konigl, Arieh and Wardle, Mark. 2011. "Wind-driving protostellar accretion discs – II. Numerical method and illustrative solutions." Monthly Notices of the Royal Astronomical Society. 412 (2), pp. 1162-1180. https://doi.org/10.1111/j.1365-2966.2010.17974.x
MRI and Outflows: Angular Momentum Transport in Protoplanetary Disks
Salmeron, Raquel. 2009. "MRI and Outflows: Angular Momentum Transport in Protoplanetary Disks ." Astrophysics and Space Science. Springer. https://doi.org/10.1007/978-3-642-00576-3_92
Wind-driving protostellar accretion discs – I. Formulation and parameter constraints
Konigl, Arieh, Salmeron, Raquel and Wardle, Mark. 2009. "Wind-driving protostellar accretion discs – I. Formulation and parameter constraints." Monthly Notices of the Royal Astronomical Society. 401 (1), pp. 479-499. https://doi.org/10.1111/j.1365-2966.2009.15664.x
Magnetorotational instability in protoplanetary discs: the effect of dust grains
Salmeron, Raquel and Wardle, Mark. 2008. "Magnetorotational instability in protoplanetary discs: the effect of dust grains." Monthly Notices of the Royal Astronomical Society. 388 (3), pp. 1223-1238. https://doi.org/10.1111/j.1365-2966.2008.13430.x
Radial and vertical angular momentum transport in protostellar discs
Salmeron, Raquel, Konigl, Arieh and Wardle, Mark. 2007. "Radial and vertical angular momentum transport in protostellar discs." Astrophysics and Space Science: an international journal of astronomy, astrophysics and space science. 311 (1-3), pp. 81-85. https://doi.org/10.1007/s10509-007-9563-z
Angular momentum transport in protostellar discs
Salmeron, Raquel, Konigl, Arieh and Wardle, Mark. 2007. "Angular momentum transport in protostellar discs." Monthly Notices of the Royal Astronomical Society. 375 (1), pp. 177-183. https://doi.org/10.1111/j.1365-2966.2006.11277.x
Magnetorotational instability in stratified, weakly ionized accretion discs
Salmeron, Raquel and Wardle, Mark. 2003. "Magnetorotational instability in stratified, weakly ionized accretion discs." Monthly Notices of the Royal Astronomical Society. 345 (3), pp. 992-1008. https://doi.org/10.1046/j.1365-8711.2003.07024.x