Transforming waste to wealth: Impact of food waste-derived soil amendments and synthetic nitrogen fertilizer on soil dynamics

Article


O'Connor, James, Mickan, Bede S., Gurung, Sun K., Siddique, Kadambot H. M., Leopold, Matthias, Bühlmann, Christopher H. and Bolan, Nanthi S.. 2024. "Transforming waste to wealth: Impact of food waste-derived soil amendments and synthetic nitrogen fertilizer on soil dynamics." Soil Use and Management. 40 (3). https://doi.org/10.1111/sum.13093
Article Title

Transforming waste to wealth: Impact of food waste-derived soil amendments and synthetic nitrogen fertilizer on soil dynamics

ERA Journal ID5277
Article CategoryArticle
AuthorsO'Connor, James, Mickan, Bede S., Gurung, Sun K., Siddique, Kadambot H. M., Leopold, Matthias, Bühlmann, Christopher H. and Bolan, Nanthi S.
Journal TitleSoil Use and Management
Journal Citation40 (3)
Article Numbere13093
Number of Pages14
Year2024
PublisherJohn Wiley & Sons
Place of PublicationUnited Kingdom
ISSN0266-0032
1475-2743
Digital Object Identifier (DOI)https://doi.org/10.1111/sum.13093
Web Address (URL)https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/sum.13093
AbstractApproximately one-third of all food produced globally goes to waste, highlighting the need for sustainable waste management technologies like composting and anaerobic digestion. These technologies convert food waste into soil amendment products such as compost, liquid digestate (LD) and solid digestate (SD). However, these food waste-derived soil amendments have relatively low nutrient contents compared with synthetic nitrogen (N) fertilizers such as urea, making their agricultural use challenging. Despite this, food waste-derived soil amendments can enhance the physical and biological properties of soil, potentially creating synergistic effects when combined with synthetic N fertilizers. This study aimed to investigate effects of food waste-derived amendments in soil applied at 50 kg ha?1 total N (compost, LD or SD) and synthetic N fertilizer [urea ammonium nitrate (UAN)] at 50 and 100 kg ha?1 total N. Over 56 days of soil incubation, greenhouse gases (CO2, N2O), soil chemistry ((Formula presented.) –N, (Formula presented.) –N, pH) and microbial biomass C (MBC) were measured. Results showed that LD + UAN 50 reduced cumulative N2O emissions by 23% compared with UAN 100, despite having the same total N and similar available N rate applied to soil. Replacing UAN with LD in farming practices can supply equivalent available N while lowering N2O emissions, offering a sustainable nutrient strategy. Moreover, applying food waste-derived soil amendments can enhance N retention in soils, reducing the need for increased applications of synthetic N fertilizers to compensate for N deficits in farming. Food waste-derived soil amendments can also act as a slower N release compared with UAN, reducing nitrogen run-off. SD had the highest CO2 emissions, followed by LD and compost. SD + UAN 50 increased MBC levels because of higher carbon content and labile carbon, and available N because of the application of UAN. The major drawback of using SD compared with LD is that the process of evaporating LD to form SD causes high ammonia volatilization (ammonium in solution into ammonia gas) rates, reducing the available N in SD. Therefore, future studies should explore strategies to reduce ammonia volatilization of LD. © 2024 The Author(s). Soil Use and Management published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
Keywordsammonia volatilization; compost; digestate; GHG; nitrification
Contains Sensitive ContentDoes not contain sensitive content
ANZSRC Field of Research 20204106. Soil sciences
Byline AffiliationsUniversity of Western Australia
Cooperative Research Centre for High Performance Soils, Australia
Richgro Garden Products, Australia
Centre for Agricultural Engineering
Permalink -

https://research.usq.edu.au/item/z9q05/transforming-waste-to-wealth-impact-of-food-waste-derived-soil-amendments-and-synthetic-nitrogen-fertilizer-on-soil-dynamics

  • 7
    total views
  • 0
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

Value of food waste-derived fertilisers on soil chemistry, microbial function and crop productivity
O'Connor, James, Mickan, Bede S., Gurung, Sun K., Buhlmann, Christopher H., Jenkins, Sasha N., Siddique, Kadambot H.M., Leopold, Matthias and Bolan, Nanthi S.. 2024. "Value of food waste-derived fertilisers on soil chemistry, microbial function and crop productivity." Applied Soil Ecology. 198. https://doi.org/10.1016/j.apsoil.2024.105380
Nitrogen dynamics and biological processes in soil amended with microalgae grown in abattoir digestate to recover nutrients
Shayesteh, Hajar, Jenkins, Sasha N., Moheimani, Navid R., Bolan, Nanthi, Buhlmann, Christopher H., Gurung, Sun Kumar, Vadiveloo, Ashiwin, Bahri, Parisa A. and Mickan, Bede S.. 2023. "Nitrogen dynamics and biological processes in soil amended with microalgae grown in abattoir digestate to recover nutrients." Journal of Environmental Management. 344. https://doi.org/10.1016/j.jenvman.2023.118467
Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration
Jha, Uday Chand, Nayyar, Harsh, Chattopadhyay, Anirudha, Beena, Radha, Lone, Ajaz A., Naik, Yogesh Dashrath, Thudi, Mahendar, Prasad, Pagadala Venkata Vara, Gupta, Sanjeev, Dixit, Girish Prasad and Siddique, Kadambot H. M.. 2023. "Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration." Frontiers in Plant Science. 14. https://doi.org/10.3389/fpls.2023.1183505
Lactic acid production from food waste at an anaerobic digestion biorefinery: effect of digestate recirculation and sucrose supplementation
Buhlmann, Christopher H., Mickan, Bede S., Tait, Stephan, Batstone, Damien J. and Bahri, Parisa A. 2023. "Lactic acid production from food waste at an anaerobic digestion biorefinery: effect of digestate recirculation and sucrose supplementation." Frontiers in Bioengineering and Biotechnology. 11. https://doi.org/10.3389/fbioe.2023.1177739
Lactic acid from mixed food waste fermentation using an adapted inoculum: Influence of pH and temperature regulation on yield and product spectrum
Buhlmann, Christopher H., Mickan, Bede S., Tait, Stephan, Batstone, Damien J., Mercer, George D. and Bahri, Parisa A.. 2022. "Lactic acid from mixed food waste fermentation using an adapted inoculum: Influence of pH and temperature regulation on yield and product spectrum." Journal of Cleaner Production. 373, pp. 1-10. https://doi.org/10.1016/j.jclepro.2022.133716
Developing a food waste biorefinery: Lactic acid extraction using anionic resin and impacts on downstream biogas production
Buhlmann, Christopher H., Mickan, Bede S., Tait, Stephan and Bahri, Parisa A.. 2022. "Developing a food waste biorefinery: Lactic acid extraction using anionic resin and impacts on downstream biogas production." Chemical Engineering Journal. 431 (3), pp. 1-9. https://doi.org/10.1016/j.cej.2021.133243
Legume Pangenome: Status and Scope for Crop Improvement
Jha, Uday Chand, Nayyar, Harsh, von Wettberg, Eric J. B., Naik, Yogesh Dashrath, Thudi, Mahendar and Siddique, Kadambot H. M.. 2022. "Legume Pangenome: Status and Scope for Crop Improvement." Plants. 11 (22). https://doi.org/10.3390/plants11223041
Lactic acid from mixed food wastes at a commercial biogas facility: Effect of feedstock and process conditions
Buhlmann, Christopher H., Mickan, Bede S., Tait, Stephan, Renton, Michael and Bahri, Parisa A.. 2021. "Lactic acid from mixed food wastes at a commercial biogas facility: Effect of feedstock and process conditions." Journal of Cleaner Production. 284, pp. 1-9. https://doi.org/10.1016/j.jclepro.2020.125243
TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star
Addison, Brett C., Wright, Duncan J., Nicholson, Belinda A., Cale, Bryson, Mocnik, Teo, Huber, Daniel, Plavchan, Peter, Wittenmyer, Robert A., Vanderburg, Andrew, Chaplin, William J., Chontos, Ashley, Clark, Jake T., Eastman, Jason D., Ziegler, Carl, Brahm, Rafael, Carter, Bradley D., Clerte, Mathieu, Espinoza, Nestor, Horner, Jonathan, ..., Themeßl, Nathalie. 2021. "TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star." Monthly Notices of the Royal Astronomical Society. 502 (3), pp. 3704-3722. https://doi.org/10.1093/mnras/staa3960
Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits
Varshney, Rajeev K., Thudi, Mahendar, Roorkiwal, Manish, He, Weiming, Upadhyaya, Hari D., Yang, Wei, Bajaj, Prasad, Cubry, Philippe, Rathore, Abhishek, Jian, Jianbo, Doddamani, Dadakhalandar, Khan, Aamir W., Garg, Vanika, Chitikineni, Annapurna, Xu, Dawen, Gaur, Pooran M., Singh, Narendra P., Chaturvedi, Sushil K., Nadigatla, Gangarao V. P. R., ..., Liu, Xin. 2019. "Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits." Nature Genetics. 51, pp. 857-864. https://doi.org/10.1038/s41588-019-0401-3
Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways
Buhlmann, Christopher H., Mickan, Bede S., Jenkins, Sasha N., Tait, Stephan, Kahandawala, Tharanga K. A. and Bahri, Parisa A.. 2018. "Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways." Bioresource Technology. 275, pp. 70-77. https://doi.org/10.1016/j.biortech.2018.12.012