The response of barley to salinity stress differs between hydroponic and soil systems

Article


Tavakkoli, Ehsan, Rengasamy, Pichu and McDonald, Glenn. 2010. "The response of barley to salinity stress differs between hydroponic and soil systems." Functional Plant Biology: an international journal of plant function. 37 (7), pp. 621-633. https://doi.org/10.1071/FP09202
Article Title

The response of barley to salinity stress differs between hydroponic and soil systems

ERA Journal ID2590
Article CategoryArticle
AuthorsTavakkoli, Ehsan (Author), Rengasamy, Pichu (Author) and McDonald, Glenn (Author)
Journal TitleFunctional Plant Biology: an international journal of plant function
Journal Citation37 (7), pp. 621-633
Number of Pages13
Year2010
Place of PublicationMelbourne, Australia
ISSN1445-4408
1445-4416
Digital Object Identifier (DOI)https://doi.org/10.1071/FP09202
Abstract

Many studies on salinity stress assume that responses in hydroponics mimic those in soil. However, interactions
between the soil solution and the soil matrix can affect responses to salinity stress. This study compared responses to salinity in hydroponics and soil, using two varieties of barley (Hordeum vulgare L.). The responses to salinity caused by high concentrations of Na+ and Cl– were compared to assess any consistent differences between hydroponics and soil associated with a cation and an anion that contribute to salinity stress. Concentrated nutrient solutions were also used to assess the effects of osmotic stress. The effects of salinity differed between the hydroponic and soil systems. Differences between
barley cultivars in growth, tissue moisture content and ionic composition were not apparent in hydroponics, whereas
significant differences occurred in soil. Growth reductions were greater under hydroponics than in soil at similar electrical conductivity values, and the uptake of Na+ and Cl– was also greater. The relative importance of ion exclusion and osmotic stress varied. In soil, ion exclusion tended to be more important at low to moderate levels of stress (EC at field capacity up to 10 dSm–1) but osmotic stress became more important at higher stress levels. High external concentrations of Cl– had similar adverse effects as high concentrations of Na+, suggesting that Cl– toxicity may reduce growth. Fundamental differences in salinity responses appeared between soil and solution culture, and the importance of the different mechanisms of damage varies according to the severity and duration of the salt stress.

Keywordssalt; sodium; adverse effect; chlorine ions; electrical conductivity; field capacity; growth reduction; Hordeum vulgare; ion exclusion; ionic composition; moisture contents; nutrient solution; osmotic stress; salinity stress; salt stress; soil matrices; soil solutions; soil systems; solution cultures; stress levels
ANZSRC Field of Research 2020410604. Soil chemistry and soil carbon sequestration (excl. carbon sequestration science)
300404. Crop and pasture biochemistry and physiology
300101. Agricultural biotechnology diagnostics (incl. biosensors)
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsNational Centre for Engineering in Agriculture
University of Adelaide
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q099z/the-response-of-barley-to-salinity-stress-differs-between-hydroponic-and-soil-systems

  • 1973
    total views
  • 11
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Assessing the comparative response of wheat and barley genotypes to salinity stress using destructive and non-destructive techniques
Berger, Bettina, Tavakkoli, Ehsan, McDonald, Glenn and Tester, Mark. 2009. "Assessing the comparative response of wheat and barley genotypes to salinity stress using destructive and non-destructive techniques." Poulsen, David (ed.) 14th Australian Barley Technical Symposium: Barley: Grain for Gain (ABTS 2009). Sunshine Coast, Australia 13 - 16 Sep 2009 Canberra, Australia.
Phenomics-based screening for salinity tolerance: a case study for the evaluation of the impact of salinity on growth of barley and faba bean
Tavakkoli, Ehsan, Rengasamy, Pichu and McDonald, Glenn. 2009. "Phenomics-based screening for salinity tolerance: a case study for the evaluation of the impact of salinity on growth of barley and faba bean." Poulsen, David (ed.) 14th Australian Barley Technical Symposium: Barley: Grain for Gain (ABTS 2009). Sunshine Coast, Australia 13 - 16 Sep 2009 Canberra, Australia.
Possible effects of irrigation with wastewater on the clay mineralogy of some Australian clayey soils: laboratory study
Marchuk, Serhiy, Churchman, Jock and Rengasamy, Pichu. 2016. "Possible effects of irrigation with wastewater on the clay mineralogy of some Australian clayey soils: laboratory study." Soil Research. 54 (7), pp. 857-868. https://doi.org/10.1071/SR14373
Potassium in winery waste waters used for irrigation and soil structural decline
Rengasamy, Pichu and Marchuk, Alla. 2011. "Potassium in winery waste waters used for irrigation and soil structural decline." 22nd Grape and Wine Science Symposium (Crush 2011). Adelaide, Australia 28 - 30 Sep 2011
Threshold electrolyte concentration for dispersive soils in relation to CROSS
Marchuk, Alla, Rengasamy, Pichu and McNeill, Ann. 2012. "Threshold electrolyte concentration for dispersive soils in relation to CROSS." Birkett, L. L. and Sparrow, L. A. (ed.) 5th Joint Australian and New Zealand Soil Science Conference (SSA 2012): Soil Solutions for Diverse Landscapes. Hobart, Australia 02 - 07 Dec 2012 Melbourne, Australia.
Cation ratio of soil structural stability (CROSS)
Marchuk, Alla G. and Rengasamy, Pichu. 2010. "Cation ratio of soil structural stability (CROSS)." Gilkes, Robert and Prakongkep, Nattaporn (ed.) 19th World Congress of Soil Science (WCSS 2010): Soil Solutions for a Changing World. Brisbane, Australia 01 - 06 Aug 2010 Melbourne, Australia.
Effect of cation ratio on soil structural stability is related to the zeta potential of dispersed clay
McNeill, Ann, Rengasamy, Pichu and Marchuk, Alla. 2011. "Effect of cation ratio on soil structural stability is related to the zeta potential of dispersed clay." International Annual Meeting of the Soil Science Society of America (SSSA 2011): Fundamentals for Life: Soil, Crop, and Environmental Sciences. San Antonio, United States 16 - 19 Nov 2011 Madison, WI. United States.
The nature of clay-cation association dictates clay behaviour in aqueous suspensions
Marchuk, Alla and Rengasamy, Pichu. 2012. "The nature of clay-cation association dictates clay behaviour in aqueous suspensions." Churchman, G. J., Cresswell, R. and Singh, B. (ed.) 22nd Australian Regolith and Clays Conference (ACMS 2012). Mildura, Australia 07 - 10 Feb 2012 Adelaide, Australia.
Cation ratio of soil structural stability (CROSS)
Rengasamy, Pichu and Marchuk, Alla. 2011. "Cation ratio of soil structural stability (CROSS)." Soil Research. 49 (3), pp. 280-285. https://doi.org/10.1071/SR10105
Clay behaviour in suspension is related to the ionicity of clay-cation bonds
Marchuk, Alla and Rengasamy, Pichu. 2011. "Clay behaviour in suspension is related to the ionicity of clay-cation bonds." Applied Clay Science. 53 (4), pp. 754-759. https://doi.org/10.1016/j.clay.2011.05.019
Threshold electrolyte concentration and dispersive potential in relation to CROSS in dispersive soils
Marchuk, Alla and Rengasamy, Pichu. 2012. "Threshold electrolyte concentration and dispersive potential in relation to CROSS in dispersive soils." Soil Research. 50 (6), pp. 473-481. https://doi.org/10.1071/SR12135
Nature of the clay-cation bond affects soil structure as verified by X-ray computed tomography
Marchuk, Alla, Rengasamy, Pichu, McNeill, Ann and Kumar, Anupama. 2012. "Nature of the clay-cation bond affects soil structure as verified by X-ray computed tomography." Soil Research. 50 (8), pp. 638-644. https://doi.org/10.1071/SR12276
Influence of organic matter, clay mineralogy, and pH on the effects of CROSS on soil structure is related to the zeta potential of the dispersed clay
Marchuk, Alla, Rengasamy, Pichu and McNeill, Ann. 2013. "Influence of organic matter, clay mineralogy, and pH on the effects of CROSS on soil structure is related to the zeta potential of the dispersed clay." Soil Research. 51 (1), pp. 34-40. https://doi.org/10.1071/SR13012
Assessment of sub-soil salinity and sodicity constraints to barley and faba bean production
Tavakkoli, Ehsan, Rengasamy, Pichu and McDonald, Glenn K.. 2011. Assessment of sub-soil salinity and sodicity constraints to barley and faba bean production. Canberra, Australia. Grains Research and Development Corporation.
Additive effects of Na+ and Cl– ions on barley growth under salinity stress
Tavakkoli, Ehsan, Fatehi, Foad, Coventry, Stewart, Rengasamy, Pichu and McDonald, Glenn K.. 2011. "Additive effects of Na+ and Cl– ions on barley growth under salinity stress." Journal of Experimental Botany. 62 (6), pp. 2189-2203. https://doi.org/10.1093/jxb/erq422
Silicon nutrition of rice is affected by soil pH, weathering, and silicon fertilisation
Tavakkoli, Ehsan, Lyons, Graham, English, Peter and Guppy, Chris. 2011. "Silicon nutrition of rice is affected by soil pH, weathering, and silicon fertilisation." Journal of Plant Nutrition and Soil Science. 174 (3), pp. 437-446. https://doi.org/10.1002/jpln.201000023
Interaction of silicon and phosphorus mitigate manganese toxicity in rice in a highly weathered soil
Tavakkoli, Ehsan, English, Peter and Guppy, Chris. 2011. "Interaction of silicon and phosphorus mitigate manganese toxicity in rice in a highly weathered soil." Communications in Soil Science and Plant Analysis. 42 (5), pp. 503-513. https://doi.org/10.1080/00103624.2011.546931
High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress
Tavakkoli, Ehsan, Rengasamy, Pichu and McDonald, Glenn. 2010. "High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress." Journal of Experimental Botany. 61 (15), pp. 4449-4459. https://doi.org/10.1093/jxb/erq251
A critical analysis of osmotic and ionic effects of salinity in two barley cultivars
Tavakkoli, Ehsan, Rengasamy, Pichu and McDonald, Glenn. 2008. "A critical analysis of osmotic and ionic effects of salinity in two barley cultivars." Unkovich, M. (ed.) 14th Australian Agronomy Conference: Global Issues. Paddock Action. Adelaide, Australia 21 - 25 Sep 2008 Gosford, NSW, Australia.
On-farm assessment of sub-soil salinity and sodicity constraints to barley production in southern Australia
Tavakkoli, Ehsan, Jones, Ben, Coventry, Stewart, Rengasamy, Pichu and McDonald, Glenn. 2010. "On-farm assessment of sub-soil salinity and sodicity constraints to barley production in southern Australia." Dove, Hugh and Culvenor, Richard (ed.) 15th Australian Agronomy Conference: Food Security from Sustainable Agriculture (ASA 2010). Lincoln, New Zealand 15 - 18 Nov 2010 Gosford, Australia.