The physical processes causing nocturnal rainfall over northwest Australia and their representation in high- and low-resolution models with parametrized convection

Article


Ackerley, D., Birch, C. E., Garcia-Carreras, L., Lavender, S. L. and Weller, E.. 2018. "The physical processes causing nocturnal rainfall over northwest Australia and their representation in high- and low-resolution models with parametrized convection." Quarterly Journal of the Royal Meteorological Society. 144 (711), pp. 511-528. https://doi.org/10.1002/qj.3223
Article Title

The physical processes causing nocturnal rainfall over northwest Australia and their representation in high- and low-resolution models with parametrized convection

ERA Journal ID1987
Article CategoryArticle
AuthorsAckerley, D. (Author), Birch, C. E. (Author), Garcia-Carreras, L. (Author), Lavender, S. L. (Author) and Weller, E. (Author)
Journal TitleQuarterly Journal of the Royal Meteorological Society
Journal Citation144 (711), pp. 511-528
Number of Pages18
Year2018
PublisherJohn Wiley & Sons
Place of PublicationHoboken, NJ, United States
ISSN0035-9009
1477-870X
Digital Object Identifier (DOI)https://doi.org/10.1002/qj.3223
Web Address (URL)https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/qj.3223
Abstract

The diurnal cycle of precipitation in the Tropics is represented poorly in general circulation models (GCMs), which is primarily attributed to the representation of moist convection. Nonetheless, in areas where precipitation is driven by the diurnal cycle in the synoptic-scale flow, GCMs may represent that circulation–rainfall relationship well. Over northwest Australia there is a tendency for precipitation to peak overnight where the diurnal cycle of the heat low circulation leads to the development of strong convergence after local sunset. In order to assess the heat low–precipitation relationship in more detail, a case-study approach is used to investigate the actual ‘weather’ that is responsible for night-time precipitation. The study shows that, where there is sufficient moisture, precipitation typically forms along convergence zones that coincide with boundaries between relatively moist and dry air masses (termed a ‘dryline’). A convergence line detection algorithm is then used to identify the fraction of observed nocturnal rainfall that is associated with any convergence zones. The same evaluation is then undertaken for a relatively high-resolution (MetUM) and low-resolution (ACCESS1.0) GCM, which simulate rainfall-generation processes similar to the observations. Finally, the convergence line detection/precipitation algorithm is run on other GCM data (from CMIP5) to see whether the same processes occur despite different model configurations (i.e. physics), which appears to be the case.

KeywordsCMIP5; convergence; dryline; heat low; MetUM; nocturnal; northwest Australia; rainfall; climate models; precipitation (meteorology); Australia; rain
ANZSRC Field of Research 2020370108. Meteorology
370202. Climatology
Public Notes

Files associated with this item cannot be displayed due to copyright restrictions.

Byline AffiliationsMonash University
University of Leeds, United Kingdom
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q51xv/the-physical-processes-causing-nocturnal-rainfall-over-northwest-australia-and-their-representation-in-high-and-low-resolution-models-with-parametrized-convection

  • 177
    total views
  • 8
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions
Zhou, Hongyan, Hudson, Debra, Li, Chen, Shi, Li, White, Bethan, Young, Griffith, Stirling, Alison, Whitall, Michael, Lock, Adrian, Lavender, Sally and Stratton, Rachel. 2024. "Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions." Journal of Southern Hemisphere Earth Systems Science. 74 (3). https://doi.org/10.1071/ES23011
The performance of the CoMorph-A convection package in global simulations with the Met Office Unified Model
Lock, A. P., Whitall, M., Stirling, A. J., Williams, K., Lavender, S. L., Morcrette, C., Matsubayashi, K., Field, P. R., Martin, G., Willett, M. and Heming, J.. 2024. "The performance of the CoMorph-A convection package in global simulations with the Met Office Unified Model." Quarterly Journal of the Royal Meteorological Society. 150 (763), pp. 3527-3543. https://doi.org/10.1002/qj.4781
The use of idealised experiments in testing a new convective parametrization: Performance of CoMorph-A
Lavender, Sally L., Stirling, Alison J., Whitall, Michael, Stratton, Rachel A., Daleu, Chimene L., Plant, Robert S., Lock, Adrian and Gu, Jian-Feng. 2024. "The use of idealised experiments in testing a new convective parametrization: Performance of CoMorph-A." Quarterly Journal of the Royal Meteorological Society. 150 (760), pp. 1581-1600. https://doi.org/10.1002/qj.4660
The Northern Australia Climate Program: Overview and Selected Highlights
Lavender, Sally L., Cowan, Tim, Hawcroft, Matthew, Wheeler, Matthew C., Jarvis, Chelsea, Cobon, David, Nguyen, Hanh, Hudson, Debra, Sharmila, S., Marshall, Andrew G., de Burgh-Day, Catherine, Milton, Sean, Stirling, Alison, Alves, Oscar and Hendon, Harry H.. 2022. "The Northern Australia Climate Program: Overview and Selected Highlights." Bulletin of the American Meteorological Society. 103 (11), pp. E2492-E2505. https://doi.org/10.1175/BAMS-D-21-0309.1
Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models
Lavender, Sally L., Walsh, Kevin J. E., Utembe, Steven, Caron, Louis‑Philippe and Guishard, Mark. 2021. "Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models." Natural Hazards. 10 (2), pp. 1025-1038. https://doi.org/10.1007/s11069-021-04977-2
The benefits of ensemble prediction for forecasting an extreme event: the Queensland floods of February 2019
Hawcroft, Matt, Lavender, Sally, Copsey, Dan, Milton, Sean, Rodriguez, Jose, Tennant, Warren, Webster, Stuart and Cowan, Tim. 2021. "The benefits of ensemble prediction for forecasting an extreme event: the Queensland floods of February 2019." Monthly Weather Review. 149, pp. 2391-2408. https://doi.org/10.1175/MWR-D-20-0330.1
Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size
Lavender, Sally L. and McBride, John L.. 2021. "Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size." International Journal of Climatology. 41 (S1), pp. E1217-E1235. https://doi.org/10.1002/joc.6763
Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends
Chand, Savin S., Dowdy, Andrew J., Ramsay, Hamish A., Walsh, Kevin J. E., Tory, Kevin J., Power, Scott B., Bell, Samuel S., Lavender, Sally L., Ye, Hua and Kuleshov, Yuri. 2019. "Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends." WIREs Climate Change. 10 (5), pp. 1-17. https://doi.org/10.1002/wcc.602
Preliminary assessment of the impact of climate change on design rainfall IFD curves
Bates, Bryson C., Argueso, Daniel, Evans, Jason, Green, Janice, Griesser, Aurel, Jakob, Dorte, Seed, Alan, Lau, Rex, Lehmann, Eric, Phatak, Aloke, Abbs, Deborah, Lavender, Sally, Nguyen, Kim, Rafter, Tony, Thatcher, Marcus, Zheng, Feifei, Westra, Seth and Leonard, Michael. 2015. "Preliminary assessment of the impact of climate change on design rainfall IFD curves." 36th Hydrology and Water Resources Symposium: The Art and Science of Water (HWRS 2015). Hobart, Australia 07 - 10 Dec 2015 Barton, Australia.
Tropical cyclone track direction climatology and its intraseasonal variability in the Australian region
Lavender, Sally L. and Dowdy, Andrew J.. 2016. "Tropical cyclone track direction climatology and its intraseasonal variability in the Australian region." Journal of Geophysical Research: Atmospheres. 121 (22), pp. 13,236-13,249. https://doi.org/10.1002/2016JD025562
Spatial and temporal variation in the effects of climatic variables on Dugong calf production
Fuentes, Mariana M. P. B., Delean, Steven, Grayson, Jillian, Lavender, Sally, Logan, Murray and Marsh, Helene. 2016. "Spatial and temporal variation in the effects of climatic variables on Dugong calf production." PLoS One. 11 (6), pp. 1-14. https://doi.org/10.1371/journal.pone.0155675
The contribution of tropical cyclones to rainfall in northwest Australia
Ng, Benjamin, Walsh, Kevin and Lavender, Sally. 2015. "The contribution of tropical cyclones to rainfall in northwest Australia." International Journal of Climatology. 35 (10), pp. 2689-2697. https://doi.org/10.1002/joc.4148
A climatology of Australian heat low events
Lavender, Sally L.. 2017. "A climatology of Australian heat low events." International Journal of Climatology. 37 (1), pp. 534-539. https://doi.org/10.1002/joc.4692
Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models
Lavender, Sally L., Walsh, Kevin J. E., Caron, Louis-Philippe, King, Malcolm, Monkiewicz, Sam, Guishard, Mark, Zhang, Qiong and Hunt, barrie. 2018. "Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models." Science Advances. 4 (8), pp. 1-8. https://doi.org/10.1126/sciadv.aat6509
The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
Lavender, Sally L., Hoeke, Ron K. and Abbs, Deborah J.. 2018. "The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study." Natural Hazards and Earth System Sciences. 18 (3), pp. 795-805. https://doi.org/10.5194/nhess-18-795-2018