Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size

Article


Lavender, Sally L. and McBride, John L.. 2021. "Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size." International Journal of Climatology. 41 (S1), pp. E1217-E1235. https://doi.org/10.1002/joc.6763
Article Title

Global climatology of rainfall rates and lifetime accumulated rainfall in tropical cyclones: Influence of cyclone basin, cyclone intensity and cyclone size

ERA Journal ID1969
Article CategoryArticle
AuthorsLavender, Sally L. (Author) and McBride, John L. (Author)
Journal TitleInternational Journal of Climatology
Journal Citation41 (S1), pp. E1217-E1235
Number of Pages19
Year2021
PublisherJohn Wiley & Sons
Place of PublicationUnited Kingdom
ISSN0899-8418
1097-0088
Digital Object Identifier (DOI)https://doi.org/10.1002/joc.6763
Web Address (URL)https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.6763
Abstract

Seventeen years of 3-hr, 0.25° resolution, precipitation data from the Tropical Rainfall Measurement Mission (TRMM) multi-satellite precipitation analysis (TMPA) product are used to develop a global climatology of precipitation in tropical cyclones (TCs). Due to very large SDs for rainfall in each stratification by intensity class or cyclone basin, our methodology concentrates on frequency distributions and percentage representation in different rainfall rate categories. The stratifications reveal that the TC rainfall climatologies are dependent on three inter-related factors: TC intensity, TC size and TC basin. The interdependence of the three is examined. The distributions of TC intensity classes in the different basins are not a significant contributor to the fact that certain basins (Northwest Pacific, North Atlantic) have higher TC rainfall rates than other basins (Northeast Pacific, South Indian). In contrast to this, the distributions of TC size classes between basins are a significant contributor to why some basins are wetter than others. A climatology is also presented of lifetime accumulated rainfall (LAR) in TCs. The record LAR belongs to hurricane Ivan in 2004, with 300 km3 of rain over the 0–350 km radius, and 432 km3 over 0–500 km. The largest LAR values occur almost exclusively in two cyclone basins: The Northwest Pacific and the North Atlantic. Not unexpectedly, LAR is determined primarily by TC duration, which accounts for around 70% of the variance. Examination of the full 17-year dataset reveals a decreasing trend in both median and extreme TC rainfall rates in all basins except the Northeast Pacific. However, mechanisms responsible for this decrease are yet to be identified and may be primarily due to the sample size or data inhomogeneities. The difference between the trends and those expected from physical principles is a concern which we hope will be taken up by other investigators.

Keywordsclimatology, cyclone intensity, cyclone size, rainfall, trends, tropical cyclone
ANZSRC Field of Research 2020370202. Climatology
Byline AffiliationsCentre for Applied Climate Sciences
University of Melbourne
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q5x61/global-climatology-of-rainfall-rates-and-lifetime-accumulated-rainfall-in-tropical-cyclones-influence-of-cyclone-basin-cyclone-intensity-and-cyclone-size

  • 281
    total views
  • 10
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions
Zhou, Hongyan, Hudson, Debra, Li, Chen, Shi, Li, White, Bethan, Young, Griffith, Stirling, Alison, Whitall, Michael, Lock, Adrian, Lavender, Sally and Stratton, Rachel. 2024. "Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions." Journal of Southern Hemisphere Earth Systems Science. 74 (3). https://doi.org/10.1071/ES23011
The performance of the CoMorph-A convection package in global simulations with the Met Office Unified Model
Lock, A. P., Whitall, M., Stirling, A. J., Williams, K., Lavender, S. L., Morcrette, C., Matsubayashi, K., Field, P. R., Martin, G., Willett, M. and Heming, J.. 2024. "The performance of the CoMorph-A convection package in global simulations with the Met Office Unified Model." Quarterly Journal of the Royal Meteorological Society. 150 (763), pp. 3527-3543. https://doi.org/10.1002/qj.4781
The use of idealised experiments in testing a new convective parametrization: Performance of CoMorph-A
Lavender, Sally L., Stirling, Alison J., Whitall, Michael, Stratton, Rachel A., Daleu, Chimene L., Plant, Robert S., Lock, Adrian and Gu, Jian-Feng. 2024. "The use of idealised experiments in testing a new convective parametrization: Performance of CoMorph-A." Quarterly Journal of the Royal Meteorological Society. 150 (760), pp. 1581-1600. https://doi.org/10.1002/qj.4660
The Northern Australia Climate Program: Overview and Selected Highlights
Lavender, Sally L., Cowan, Tim, Hawcroft, Matthew, Wheeler, Matthew C., Jarvis, Chelsea, Cobon, David, Nguyen, Hanh, Hudson, Debra, Sharmila, S., Marshall, Andrew G., de Burgh-Day, Catherine, Milton, Sean, Stirling, Alison, Alves, Oscar and Hendon, Harry H.. 2022. "The Northern Australia Climate Program: Overview and Selected Highlights." Bulletin of the American Meteorological Society. 103 (11), pp. E2492-E2505. https://doi.org/10.1175/BAMS-D-21-0309.1
Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models
Lavender, Sally L., Walsh, Kevin J. E., Utembe, Steven, Caron, Louis‑Philippe and Guishard, Mark. 2021. "Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models." Natural Hazards. 10 (2), pp. 1025-1038. https://doi.org/10.1007/s11069-021-04977-2
The benefits of ensemble prediction for forecasting an extreme event: the Queensland floods of February 2019
Hawcroft, Matt, Lavender, Sally, Copsey, Dan, Milton, Sean, Rodriguez, Jose, Tennant, Warren, Webster, Stuart and Cowan, Tim. 2021. "The benefits of ensemble prediction for forecasting an extreme event: the Queensland floods of February 2019." Monthly Weather Review. 149, pp. 2391-2408. https://doi.org/10.1175/MWR-D-20-0330.1
Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends
Chand, Savin S., Dowdy, Andrew J., Ramsay, Hamish A., Walsh, Kevin J. E., Tory, Kevin J., Power, Scott B., Bell, Samuel S., Lavender, Sally L., Ye, Hua and Kuleshov, Yuri. 2019. "Review of tropical cyclones in the Australian region: climatology, variability, predictability, and trends." WIREs Climate Change. 10 (5), pp. 1-17. https://doi.org/10.1002/wcc.602
Preliminary assessment of the impact of climate change on design rainfall IFD curves
Bates, Bryson C., Argueso, Daniel, Evans, Jason, Green, Janice, Griesser, Aurel, Jakob, Dorte, Seed, Alan, Lau, Rex, Lehmann, Eric, Phatak, Aloke, Abbs, Deborah, Lavender, Sally, Nguyen, Kim, Rafter, Tony, Thatcher, Marcus, Zheng, Feifei, Westra, Seth and Leonard, Michael. 2015. "Preliminary assessment of the impact of climate change on design rainfall IFD curves." 36th Hydrology and Water Resources Symposium: The Art and Science of Water (HWRS 2015). Hobart, Australia 07 - 10 Dec 2015 Barton, Australia.
Tropical cyclone track direction climatology and its intraseasonal variability in the Australian region
Lavender, Sally L. and Dowdy, Andrew J.. 2016. "Tropical cyclone track direction climatology and its intraseasonal variability in the Australian region." Journal of Geophysical Research: Atmospheres. 121 (22), pp. 13,236-13,249. https://doi.org/10.1002/2016JD025562
Spatial and temporal variation in the effects of climatic variables on Dugong calf production
Fuentes, Mariana M. P. B., Delean, Steven, Grayson, Jillian, Lavender, Sally, Logan, Murray and Marsh, Helene. 2016. "Spatial and temporal variation in the effects of climatic variables on Dugong calf production." PLoS One. 11 (6), pp. 1-14. https://doi.org/10.1371/journal.pone.0155675
The contribution of tropical cyclones to rainfall in northwest Australia
Ng, Benjamin, Walsh, Kevin and Lavender, Sally. 2015. "The contribution of tropical cyclones to rainfall in northwest Australia." International Journal of Climatology. 35 (10), pp. 2689-2697. https://doi.org/10.1002/joc.4148
A climatology of Australian heat low events
Lavender, Sally L.. 2017. "A climatology of Australian heat low events." International Journal of Climatology. 37 (1), pp. 534-539. https://doi.org/10.1002/joc.4692
Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models
Lavender, Sally L., Walsh, Kevin J. E., Caron, Louis-Philippe, King, Malcolm, Monkiewicz, Sam, Guishard, Mark, Zhang, Qiong and Hunt, barrie. 2018. "Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models." Science Advances. 4 (8), pp. 1-8. https://doi.org/10.1126/sciadv.aat6509
The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study
Lavender, Sally L., Hoeke, Ron K. and Abbs, Deborah J.. 2018. "The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study." Natural Hazards and Earth System Sciences. 18 (3), pp. 795-805. https://doi.org/10.5194/nhess-18-795-2018
The physical processes causing nocturnal rainfall over northwest Australia and their representation in high- and low-resolution models with parametrized convection
Ackerley, D., Birch, C. E., Garcia-Carreras, L., Lavender, S. L. and Weller, E.. 2018. "The physical processes causing nocturnal rainfall over northwest Australia and their representation in high- and low-resolution models with parametrized convection." Quarterly Journal of the Royal Meteorological Society. 144 (711), pp. 511-528. https://doi.org/10.1002/qj.3223