Bi-directional grid absorption barrier constrained stochastic processes with applications in finance and investment
Article
Article Title | Bi-directional grid absorption barrier constrained stochastic processes with applications in finance and investment |
---|---|
Article Category | Article |
Authors | Taranto, Aldo (Author) and Khan, Shahjahan (Author) |
Journal Title | Risk Governance & Control: Financial Markets & Institutions |
Journal Citation | 10 (3), pp. 20-33 |
Number of Pages | 14 |
Year | 2020 |
Place of Publication | Ukraine |
Digital Object Identifier (DOI) | https://doi.org/10.22495/rgcv10i3p2 |
Web Address (URL) | https://www.virtusinterpress.org/Bi-directional-grid-absorption-barrier-constrained-stochastic-processes-with.html |
Abstract | Whilst the gambler’s ruin problem (GRP) is based on martingales and the established probability theory proves that the GRP is a doomed strategy, this research details how the semimartingale framework is required for the grid trading problem (GTP) of financial markets, especially foreign exchange (FX) markets. As banks and financial institutions have the requirement to hedge their FX exposure, the GTP can help provide a framework for greater automation of the hedging process and help forecast which hedge scenarios to avoid. Two theorems are adapted from GRP to GTP and prove that grid trading, whilst still subject to the risk of ruin, has the ability to generate significantly more profitable returns in the short term. This is also supported by extensive simulation and distributional analysis. We introduce two absorption barriers, one at zero balance (ruin) and one at a specified profit target. This extends the traditional GRP and the GTP further by deriving both the probability of ruin and the expected number of steps (of reaching a barrier) to better demonstrate that GTP takes longer to reach ruin than GRP. These statistical results have applications into finance such as multivariate dynamic hedging (Noorian, Flower, & Leong, 2016), portfolio risk optimization, and algorithmic loss recovery. |
Keywords | Grid Trading, Random Walks, Probability of Ruin, Gambler’s Ruin Problem, Semimartingales, Martingales, Stopping Times, Bi-Directional Grids |
ANZSRC Field of Research 2020 | 490510. Stochastic analysis and modelling |
490106. Financial mathematics | |
490399. Numerical and computational mathematics not elsewhere classified | |
Byline Affiliations | Faculty of Health, Engineering and Sciences |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q5x8w/bi-directional-grid-absorption-barrier-constrained-stochastic-processes-with-applications-in-finance-and-investment
Download files
312
total views208
total downloads5
views this month6
downloads this month