Increases in corticospinal responsiveness during a sustained submaximal plantar flexion
Article
Article Title | Increases in corticospinal responsiveness during a sustained submaximal plantar flexion |
---|---|
ERA Journal ID | 3161 |
Article Category | Article |
Authors | Hoffman, B. W. (Author), Oya, T. (Author), Carroll, T. J. (Author) and Cresswell, A. G. (Author) |
Journal Title | Journal of Applied Physiology |
Journal Citation | 107 (1), pp. 112-120 |
Number of Pages | 9 |
Year | 2009 |
Publisher | American Physiological Society |
Place of Publication | United States |
ISSN | 1522-1601 |
8750-7587 | |
Digital Object Identifier (DOI) | https://doi.org/10.1152/japplphysiol.91541.2008 |
Web Address (URL) | https://journals.physiology.org/doi/full/10.1152/japplphysiol.91541.2008 |
Abstract | Studying the responsiveness of specific central nervous system pathways to electrical or magnetic stimulation can provide important information regarding fatigue processes in the central nervous system. We investigated the changes in corticospinal responsiveness during a sustained submaximal contraction of the triceps surae. Comparisons were made between the size of motor-evoked potentials (MEPs) elicited by motor cortical stimulation and cervicomedullary motor-evoked potentials (CMEPs) elicited by magnetic stimulation of the descending tracts to determine the site of any change in corticospinal responsiveness. Participants maintained an isometric contraction of triceps surae at 30% of maximal voluntary contraction (MVC) for as long as possible on two occasions. Stimulation was applied to the motor cortex or the cervicomedullary junction at 1-min intervals during contraction until task failure. Peripheral nerve stimulation was also applied to evoke maximal M waves (M-max) and a superimposed twitch. Additionally, MEPs and CMEPs were evoked during brief contractions at 80%, 90%, and 100% of MVC as a nonfatigue control. During the sustained contractions, MEP amplitude increased significantly in soleus (113%) and medial gastrocnemius (108%) muscles and, at task failure, matched MEP amplitude in the prefatigue MVC (similar to 20-25% M-max). In contrast, CMEP amplitude increased significantly in medial gastrocnemius (51%), but not in soleus (63%) muscle and, at task failure, was significantly smaller than during prefatigue MVC (5-6% M-max vs. 11-13% M-max). The data indicate that cortical processes contribute substantially to the increase in corticospinal responsiveness during sustained submaximal contraction of triceps surae. |
Keywords | lower limb; central nervous system; muscle; transcranial magnetic stimulation; electromyogram |
ANZSRC Field of Research 2020 | 420701. Biomechanics |
420703. Motor control | |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | University of Queensland |
Institution of Origin | University of Southern Queensland |
https://research.usq.edu.au/item/q65x2/increases-in-corticospinal-responsiveness-during-a-sustained-submaximal-plantar-flexion
138
total views5
total downloads2
views this month0
downloads this month