3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data

Article


Lewandowicz, Elzbieta, Tarsha Kurdi, Fayez and Gharineiat, Zahra. 2022. "3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data." Remote Sensing. 14 (19), pp. 1-17. https://doi.org/10.3390/rs14194687
Article Title

3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data

ERA Journal ID201448
Article CategoryArticle
AuthorsLewandowicz, Elzbieta (Author), Tarsha Kurdi, Fayez (Author) and Gharineiat, Zahra (Author)
Journal TitleRemote Sensing
Journal Citation14 (19), pp. 1-17
Article Number4687
Number of Pages17
Year2022
PublisherMDPI AG
Place of PublicationSwitzerland
ISSN2072-4292
Digital Object Identifier (DOI)https://doi.org/10.3390/rs14194687
Web Address (URL)https://www.mdpi.com/2072-4292/14/19/4687
Abstract

This paper presents an innovative approach to the automatic modeling of buildings composed of rotational surfaces, based exclusively on airborne LiDAR point clouds. The proposed approach starts by detecting the gravity center of the building's footprint. A thin point slice parallel to one coordinate axis around the gravity center was considered, and a vertical cross-section was rotated around a vertical axis passing through the gravity center, to generate the 3D building model. The constructed model was visualized with a matrix composed of three matrices, where the same dimensions represented the X, Y, and Z Euclidean coordinates. Five tower point clouds were used to evaluate the performance of the proposed algorithm. Then, to estimate the accuracy, the point cloud was superimposed onto the constructed model, and the deviation of points describing the building model was calculated, in addition to the standard deviation. The obtained standard deviation values, which express the accuracy, were determined in the range of 0.21 m to 1.41 m. These values indicate that the accuracy of the suggested method is consistent with approaches suggested previously in the literature. In the future, the obtained model could be enhanced with the use of points that have considerable deviations. The applied matrix not only facilitates the modeling of buildings with various levels of architectural complexity, but it also allows for local enhancement of the constructed models.

Keywords3D modeling; buildings; LiDAR; cross-section; rotating surface
Related Output
Has version3D LoD2 and LoD3 Modelling of Rotating Surface Building of Ornamental Towers starting from LiDAR Data
ANZSRC Field of Research 2020401304. Photogrammetry and remote sensing
461199. Machine learning not elsewhere classified
401302. Geospatial information systems and geospatial data modelling
Byline AffiliationsUniversity of Warmia and Mazury, Poland
School of Surveying and Built Environment
Institution of OriginUniversity of Southern Queensland
Permalink -

https://research.usq.edu.au/item/q7v52/3d-lod2-and-lod3-modeling-of-buildings-with-ornamental-towers-and-turrets-based-on-lidar-data

Download files


Published Version
remotesensing-14-04687.pdf
License: CC BY 4.0
File access level: Anyone

  • 86
    total views
  • 58
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Supplementary Dam Site Selection Using a Geospatial Approach: A Case Study of Wivenhoe Dam
Zytoon, Aseel, Gharineiat, Zahra and Alajarmeh, Omar. 2024. "Supplementary Dam Site Selection Using a Geospatial Approach: A Case Study of Wivenhoe Dam." ISPRS International Journal of Geo-Information. 13 (6). https://doi.org/10.3390/ijgi13060180
Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data
Tarsha Kurdi, Fayez, Lewandowicz, Elzbieta, Gharineiat, Zahra and Shan, Jie. 2024. "Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data." Remote Sensing. 16 (12). https://doi.org/10.3390/rs16122220
Modeling the Geometry of Tree Trunks Using LiDAR Data
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Lewandowicz, Elzbieta and Shan, Jie. 2024. "Modeling the Geometry of Tree Trunks Using LiDAR Data." Forests. 15 (2). https://doi.org/10.3390/f15020368
Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form
Tarsha Kurdi, Fayez, Lewandowicz, Elżbieta, Shan, Jie and Gharineiat, Zahra. 2024. "Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 17, pp. 3010-3022. https://doi.org/10.1109/JSTARS.2024.3349549
Efficiency of Terrestrial Laser Scanning in Survey Works: Assessment, Modelling, and Monitoring
Tarsha Kurdi, Fayez, Reed, Paul, Gharineiat, Zahra and Awrangjeb, Mohammad. 2023. "Efficiency of Terrestrial Laser Scanning in Survey Works: Assessment, Modelling, and Monitoring." International Journal of Environmental Sciences and Natural Resources. 32 (2). https://doi.org/10.19080/IJESNR.2023.32.556334
3D LoD2 and LoD3 Modelling of Rotating Surface Building of Ornamental Towers starting from LiDAR Data
Lewandowicz, Elzbieta, Tarsha Kurdi, Fayez and Gharineiat, Zahra. 2023. "3D LoD2 and LoD3 Modelling of Rotating Surface Building of Ornamental Towers starting from LiDAR Data." Oniga, Valeria-Ersilia (ed.) Prime Archives in Remote Sensing. India. Vide Leaf.
Torsional behavior of GFRP-reinforced concrete pontoon decks with and without an edge cutout
Manalo, Allan, Yang, Xian, Alajarmeh, Omar, Benmokrane, Brahim, Gharineiat, Zahra, Ebrahimzadeh, Shahrad, Sorbello, Charles-Dean and Weerakoon, Senarath. 2023. "Torsional behavior of GFRP-reinforced concrete pontoon decks with and without an edge cutout." Marine Structures. 88. https://doi.org/10.1016/j.marstruc.2022.103345
Modeling Multi-Rotunda Buildings at LoD3 Level from LiDAR Data
Tarsha Kurdi, Fayez, Lewandowicz, Elzbieta, Gharineiat, Zahra and Shan, Jie. 2023. "Modeling Multi-Rotunda Buildings at LoD3 Level from LiDAR Data." Remote Sensing. 15 (13). https://doi.org/10.3390/rs15133324
Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data
Tarsha Kurdi, Fayez, Amakhchan, Wijdan, Gharineiat, Zahra, Boulaassal, Hakim and Kharki, Omar El. 2023. "Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data." Sensors. 23 (17). https://doi.org/10.3390/s23177360
Machine learning-based segmentation of aerial LiDAR point cloud data on building roof
Dey, Emon Kumar, Awrangjeb, Mohammad, Tarsha Kurdi, Fayez and Stantic, Bela. 2023. "Machine learning-based segmentation of aerial LiDAR point cloud data on building roof." European Journal of Remote Sensing. 56 (1). https://doi.org/10.1080/22797254.2023.2210745
Construction and Deconstruction: Materials and substances from 'waste'
Burey, Paulomi, Feldman, Jessica, Seligmann, Hannah, Song, Eric, Flynn, Matthew, Helwig, Andreas, Gharineiat, Zahra, Seneviratne, Dinuki, Whiteside, Eliza, Shelley, Tristan, Priesler, Nils, Manalo, Allan, Mirzaghorbanali, Ali, Nourizadeh, Hadi, Roberts, Michae, Nicol, Rose, Redmond, Petrea, Lynch, Mark, Dearnaley, John, ..., Germon, Geoff. 2023. "Construction and Deconstruction: Materials and substances from 'waste'." Chemistry in Australia. (June-August 2023), pp. 16-21.
CNN Based Image Classification of Malicious UAVs
Brown, Jason, Gharineiat, Zahra and Raj, Nawin. 2023. "CNN Based Image Classification of Malicious UAVs." Applied Sciences. 13 (1), pp. 1-13. https://doi.org/10.3390/app13010240
Crack Detection in Concrete Structures Using Deep Learning
Golding, Vaughn Peter, Gharineiat, Zahra, Munawar, Hafiz Suliman and Ullah, Fahim. 2022. "Crack Detection in Concrete Structures Using Deep Learning." Sustainability. 14 (13), pp. 1-25. https://doi.org/10.3390/su14138117
A Framework for Burnt Area Mapping and Evacuation Problem Using Aerial Imagery Analysis
Munawar, Hafiz Suliman, Gharineiat, Zahra, Akram, Junaid and Khan, Sara Imran. 2022. "A Framework for Burnt Area Mapping and Evacuation Problem Using Aerial Imagery Analysis." Fire. 5 (4), pp. 1-15. https://doi.org/10.3390/fire5040122
Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques
Gharineiat, Zahra, Tarsha Kurdi, Fayez and Campbell, Glenn. 2022. "Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques." Remote Sensing. 14 (19), pp. 1-24. https://doi.org/10.3390/rs14194685
Assessment and Prediction of Sea Level Trend in the South Pacific Region
Raj, Nawin, Gharineiat, Zahra, Ahmed, Abul Abrar Masrur and Stepanyants, Yury. 2022. "Assessment and Prediction of Sea Level Trend in the South Pacific Region." Remote Sensing. 14 (4), pp. 1-25. https://doi.org/10.3390/rs14040986
Comparative Approach of Unmanned Aerial Vehicle Restrictions in Controlled Airspaces
McTegg, Stephen, Kurdi, Fayez, Simmons, Shane and Gharineiat, Zahra. 2022. "Comparative Approach of Unmanned Aerial Vehicle Restrictions in Controlled Airspaces." Remote Sensing. 14 (4), pp. 1-30. https://doi.org/10.3390/rs14040822
Automatic Filtering of Lidar Building Point Cloud in Case of Trees Associated to Building Roof
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Campbell, Glenn, Awrangjeb, Mohammad and Dey, Emon Kumar. 2022. "Automatic Filtering of Lidar Building Point Cloud in Case of Trees Associated to Building Roof." Remote Sensing. 14 (2), pp. 1-23. https://doi.org/10.3390/rs14020430
Full series algorithm of automatic building extraction and modelling from LiDAR data
Tarsha Kurdi, Fayez, Gharineiat, Zahra, Campbell, Glenn, Dey, Emon Kumar and Awrangjeb, Mohammad. 2021. "Full series algorithm of automatic building extraction and modelling from LiDAR data." Zhou, Jun, Salvado, Olivier, Sohel, Ferdous, Borges, Paulo and Wang, Shilin (ed.) 2021 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2021). Gold Coast, Australia 29 Nov - 01 Dec 2021 United States.
Anthocyanin retention in Queen Garnet plums during processing and bottling
Pahl, Jessica, Burey, Polly, Lynch, Mark, Helwig, Andreas and Gharineiat, Zahra. 2022. Anthocyanin retention in Queen Garnet plums during processing and bottling. Australia. Fight Food Waste Cooperative Research Centre.
Pressure beneath the foot for older adults using an improved approach
Al-Daffaie, Kadhem, Chong, Albert K. and Gharineiat, Zahra. 2019. "Pressure beneath the foot for older adults using an improved approach." 9th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE 2019). Kota Kinabalu, Malaysia 27 - 28 Apr 2019 United States. https://doi.org/10.1109/ISCAIE.2019.8743653
Random forest machine learning technique for automatic vegetation detection and modelling in LiDAR data
Tarsha Kurdi, Fayez, Amakhchan, Wijdan and Gharineiat, Zahra. 2021. "Random forest machine learning technique for automatic vegetation detection and modelling in LiDAR data." International Journal of Environmental Sciences and Natural Resources. 28 (2). https://doi.org/10.19080/IJESNR.2021.28.556234
Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern Australian coastlines
Raj, Nawin and Gharineiat, zahra. 2021. "Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern Australian coastlines." Mathematics. 9 (21), pp. 1-20. https://doi.org/10.3390/math9212696
Plantar Pressure Characteristics in Obese Individuals: A Proposed Methodology
Al-Daffaie, Kadhem, Chong, Albert K. and Gharineiat, Zahra. 2019. "Plantar Pressure Characteristics in Obese Individuals: A Proposed Methodology." 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC). Singapore 27 - 29 Jul 2019 United States. IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/ICISPC.2019.8935691
Spectral Analysis of Satellite Altimeters and Tide Gauges Data around the Northern Australian Coast
Gharineiat, Zahra and Deng, Xiaoli. 2020. "Spectral Analysis of Satellite Altimeters and Tide Gauges Data around the Northern Australian Coast." Remote Sensing. 12 (1), pp. 1-15. https://doi.org/10.3390/rs12010161
Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast
Gharineiat, Zahra and Deng, Xiaoli. 2018. "Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast." Advances in Space Research. 61 (10), pp. 2540-2554. https://doi.org/10.1016/j.asr.2018.02.038
Coastal altimetry for sea level changes in Northern Australian coastal oceans
Gharineiat, Zahra. 2017. Coastal altimetry for sea level changes in Northern Australian coastal oceans. PhD Thesis Doctor of Philosophy. University of Newcastle.
Observing and modelling the high water level from satellite radar altimetry during tropical cyclones
Deng, Xiaoli, Gharineiat, Zahra, Andersen, Ole B. and Stewart, Mark G.. 2016. "Observing and modelling the high water level from satellite radar altimetry during tropical cyclones." Rizos, Chris and Willis, Pascal (ed.) 2013 IAG Scientific Assembly. Postdam, Germany 01 - 06 Sep 2013 Switzerland. https://doi.org/10.1007/1345_2015_108
Application of the multi adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events
Gharineiat, Zahra and Deng, Xiaoli. 2015. "Application of the multi adaptive regression splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events." Marine Geodesy. 38 (3), pp. 261-276. https://doi.org/10.1080/01490419.2015.1036183